1
|
Cowie RH, Malik R, Morgan ER. Comparative biology of parasitic nematodes in the genus Angiostrongylus and related genera. ADVANCES IN PARASITOLOGY 2023; 121:65-197. [PMID: 37474239 DOI: 10.1016/bs.apar.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The rise to prominence of some Angiostrongylus species through associated emerging disease in humans and dogs has stimulated calls for a renewed focus on the biology of this genus and three related genera. Although significant research efforts have been made in recent years these have tended to focus on individual species and specific aspects such as diagnosis and treatment of disease or new records of occurrence and hosts. This comprehensive review takes a comparative approach, seeking commonalities and differences among species and asking such questions as: Which species belong to this and to closely related genera and how are they related? Why do only some species appear to be spreading geographically and what factors might underlie range expansion? Which animal species are involved in the life cycles as definitive, intermediate, paratenic and accidental hosts? How do parasite larvae find, infect and develop within these hosts? What are the consequences of infection for host health? How will climate change affect future spread and global health? Appreciating how species resemble and differ from each other shines a spotlight on knowledge gaps and provides provisional guidance on key species characteristics warranting detailed study. Similarities exist among species, including the basic life cycle and transmission processes, but important details such as host range, climatic requirements, migration patterns within hosts and disease mechanisms differ, with much more information available for A. cantonensis and A. vasorum than for other species. Nonetheless, comparison across Angiostrongylus reveals some common patterns. Historically narrow definitive host ranges are expanding with new knowledge, combining with very broad ranges of intermediate gastropod hosts and vertebrate and invertebrate paratenic and accidental hosts to provide the backdrop to complex interactions among climate, ecology and transmission that remain only partly understood, even for the species of dominant concern. Key outstanding questions concern larval dynamics and the potential for transmission outside trophic relations, relations between infection and disease severity in different hosts, and how global change is altering transmission beyond immediate impacts on development rate in gastropods. The concept of encounter and compatibility filters could help to explain differences in the relative importance of different gastropod species as intermediate hosts and determine the importance of host community composition and related environmental factors to transmission and range. Across the group, it remains unclear what, physiologically, immunologically or taxonomically, delimits definitive, accidental and paratenic hosts. Impacts of infection on definitive host fitness and consequences for population dynamics and transmission remain mostly unexplored across the genus. Continual updating and cross-referencing across species of Angiostrongylus and related genera is important to synthesise rapid advances in understanding of key traits and behaviours, especially in important Angiostrongylus species that are emerging causative agents of disease in humans and other animals.
Collapse
Affiliation(s)
- Robert H Cowie
- Pacific Biosciences Research Center, University of Hawaii, Maile Way, Gilmore, Honolulu, HI, United States.
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, NSW, Australia
| | - Eric R Morgan
- Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast, United Kingdom; School of Veterinary Science, University of Bristol, Langford House, Langford, North Somerset, United Kingdom
| |
Collapse
|
2
|
Feng Y, Feng F, Zheng C, Zhou Z, Jiang M, Liu Z, Xie F, Sun X, Wu Z. Tanshinone IIA attenuates demyelination and promotes remyelination in A. cantonensis-infected BALB/c mice. Int J Biol Sci 2019; 15:2211-2223. [PMID: 31592236 PMCID: PMC6775289 DOI: 10.7150/ijbs.35266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis infection can cause demyelination in the central nervous system, and there is no effective treatment. METHODS We used dexamethasone, Tanshinone IIA (TSIIA) and Cryptotanshinone(Two traditional Chinese medicine monomers) in combination with albendazole (AB, a standard anti-helminthic compound) to observe their therapeutic effect on demyelination in A. cantonensis-infected mice. Luxol fast blue staining and electron microscope of myelin sheath, Oligodendrocyte (OL) number and myelin basic protein (MBP) expression in brain was detected in above groups. RESULTS TSIIA+AB facilitated OL proliferation and significantly increased both myelin sheath thickness and the population of small-diameter axons. In addition, TSIIA treatment inhibited the expression of inflammation-related factors (interleukin [IL]-6, IL-1β, tumor necrosis factor [TNF]-α, inducible nitric oxide synthase [iNOS]) rather than inhibiting eosinophil infiltration in brain. TSIIA also decreased microglial activation and shifted their phenotype from M1 to M2. CONCLUSIONS Taken together, these results provide evidence that TSIIA combined with AB may be an effective treatment for demyelination caused by A. cantonensis infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ying Feng
- Medical School of South China University of Technology, Guangzhou, China
| | - Feng Feng
- The Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cunjing Zheng
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zongpu Zhou
- Medical School of South China University of Technology, Guangzhou, China
| | - Meihua Jiang
- Anatomy Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Liu
- Guangzhou First People's Hospital, Guangzhou, China
| | - Fukang Xie
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| |
Collapse
|
3
|
Feng F, Feng Y, Liu Z, Li WH, Wang WC, Wu ZD, Lv Z. Effects of albendazole combined with TSII-A (a Chinese herb compound) on optic neuritis caused by Angiostrongylus cantonensis in BALB/c mice. Parasit Vectors 2015; 8:606. [PMID: 26608105 PMCID: PMC4660773 DOI: 10.1186/s13071-015-1214-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background Angiostrongylus cantonensis (A. cantonensis) infection can lead to optic neuritis, retinal inflammation, damage to ganglion cells, demyelination of optic nerve and visual impairment. Combined therapy of albendazole and dexamethasone is a common treatment for the disease in the clinic, but it plays no role in vision recovery. Therefore, it has been necessary to explore alternative therapies to treat this disease. Previous studies reported the neuro-productive effects of two constituents of Danshen (a Chinese herb)-tanshinone II-A (TSII-A) and cryptotanshinone (CPT), and this study aims to evaluate the impacts of TSII-A or CPT combined with albendazole on optic neuritis caused by A. cantonensis infection in a murine model. Methods To assess the effects of TSII-A or CPT combined with albendazole on optic neuritis due to the infection, mice were divided into six groups, including the normal control group, infection group and four treatment groups (albendazole group, albendazole combined with dexamethasone group, albendazole combined with CPT group and albendazole combined with TSII-A group). The infection group and treatment groups were infected with A. cantonensisand the treatment groups received interventions from 14 dpi (days post infection), respectively. At 21 dpi, the visual acuity of mice in each group was examined by visual evoked potential (VEP). The pathologic alteration of the retina and optic nerve were observed by hematoxylin and eosin (H&E) staining and transmission electronic microscopy (TEM). Results Infection of A. cantonensis caused prolonged VEP latency, obvious inflammatory cell infiltration in the retina, damaged retinal ganglions and retinal swelling, followed by optic nerve fibre demyelination and a decreasing number of axons at 21 dpi. In treatment groups, albendazole could not alleviate the above symptoms; albendazole combined with dexamethasone lessened the inflammation of the retina, but was futile for the other changes; however, albendazole combined with CPT and albendazole combined with TSII-A showed obvious effects on the recovery of prolonged VEP latency, destruction and reduction of ganglion cells, optic nerve demyelination and axon loss. Compared with albendazole-CPT compound, albendazole combined with TSII-A was more effective. Conclusions The current study demonstrates that albendazole combined with TSII-A plays a more effective role in treating optic neuritis caused by A. cantonensis in mice than with dexamethasone, as applied in conventional treatment, indicating that albendazole combined with TSII-A might be an alternate therapy for this parasitic disease in the clinic.
Collapse
Affiliation(s)
- Feng Feng
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Ying Feng
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhen Liu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Wei-Hua Li
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Wen-Cong Wang
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Zhong-Dao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Zhiyue Lv
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Yu L, Wu X, Wei J, Liao Q, Xu L, Luo S, Zeng X, Zhao Y, Lv Z, Wu Z. Preliminary expression profile of cytokines in brain tissue of BALB/c mice with Angiostrongylus cantonensis infection. Parasit Vectors 2015; 8:328. [PMID: 26070790 PMCID: PMC4476182 DOI: 10.1186/s13071-015-0939-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/05/2015] [Indexed: 12/05/2022] Open
Abstract
Background Angiostrongylus cantonensis (A. cantonensis) infection can result in increased risk of eosinophilic meningitis. Accumulation of eosinophils and inflammation can result in the A. cantonensis infection playing an important role in brain tissue injury during this pathological process. However, underlying mechanisms regarding the transcriptomic responses during brain tissue injury caused by A. cantonensis infection are yet to be elucidated. This study is aimed at identifying some genomic and transcriptomic factors influencing the accumulation of eosinophils and inflammation in the mouse brain infected with A. cantonensis. Methods An infected mouse model was prepared based on our laboratory experimental process, and then the mouse brain RNA Libraries were constructed for deep Sequencing with Illumina Genome Analyzer. The raw data was processed with a bioinformatics’ pipeline including Refseq genes expression analysis using cufflinks, annotation and classification of RNAs, lncRNA prediction as well as analysis of co-expression network. The analysis of Refseq data provides the measure of the presence and prevalence of transcripts from known and previously unknown genes. Results This study showed that Cys-Cys (CC) type chemokines such as CCL2, CCL8, CCL1, CCL24, CCL11, CCL7, CCL12 and CCL5 were elevated significantly at the late phase of infection. The up-regulation of CCL2 indicated that the worm of A. cantonensis had migrated into the mouse brain at an early infection phase. CCL2 could be induced in the brain injury during migration and CCL2 might play a major role in the neuropathic pain caused by A. cantonensis infection. The up-regulated expression of IL-4, IL-5, IL-10, and IL-13 showed Th2 cell predominance in immunopathological reactions at late infection phase in response to infection by A. cantonensis. These different cytokines can modulate and inhibit each other and function as a network with the specific potential to drive brain eosinophilic inflammation. The increase of ATF-3 expression at 21 dpi suggested the injury of neuronal cells at late phase of infection. 1217 new potential lncRNA were candidates of interest for further research. Conclusions These cytokine networks play an important role in the development of central nervous system inflammation caused by A. cantonensis infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0939-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Yu
- Department of Preventive Medicine, School of Medicine, Three Gorges University, Yichang, China. .,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoying Wu
- Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Jie Wei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Qi Liao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China.
| | - Lian Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Siqi Luo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zhao
- Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, The Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|