1
|
Pirovich DB, Da'dara AA, Skelly PJ. Schistosoma mansoni glyceraldehyde-3-phosphate dehydrogenase enhances formation of the blood-clot lysis protein plasmin. Biol Open 2020; 9:bio050385. [PMID: 32098782 PMCID: PMC7104858 DOI: 10.1242/bio.050385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Schistosomes are intravascular blood flukes that cause the parasitic disease schistosomiasis. In agreement with Schistosoma mansoni (Sm) proteomic analysis, we show here that the normally intracellular glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also found at the parasite surface; live worms from all intravascular life stages display GAPDH activity. Suppressing GAPDH gene expression using RNA interference significantly lowers this live worm surface activity. Medium in which the worms are cultured overnight displays essentially no activity, showing that the enzyme is not shed or excreted but remains associated with the worm surface. Immunolocalization experiments confirm that the enzyme is highly expressed in the parasite tegument (skin). Surface activity in schistosomula amounts to ∼8% of that displayed by equivalent parasite lysates. To address the functional role of SmGAPDH, we purified the protein following its expression in Escherichiacoli strain DS113. The recombinant protein displays optimal enzymatic activity at pH 9.2, shows robust activity at the temperature of the parasite's hosts, and has a Michaelis-Menten constant for glyceraldehyde-3-phosphate (GAP) of 1.4 mM±0.24. We show that recombinant SmGAPDH binds plasminogen (PLMG) and promotes PLMG conversion to its active form (plasmin) in a dose response in the presence of tissue plasminogen activator. Since plasmin is a key mediator of thrombolysis, our results support the hypothesis that SmGAPDH, a host-interactive tegumental protein that can enhance PLMG activation, could help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
2
|
Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop 2020; 203:105309. [PMID: 31862466 DOI: 10.1016/j.actatropica.2019.105309] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis is a fish-borne trematode that inhabits the bile duct of mammals including humans. Clonorchiasis is prevalent in China, Korea, and Vietnam, and 15-20 million people are estimated to be infected by this fluke. Freshwater snails act as the first intermediate host for the proliferation of C. sinensis larvae and shed the cercariae into water. The cercariae penetrate the skin of freshwater fish and transform to metacercariae. Humans are infected by eating raw or undercooked freshwater fish as dishes of filet, "sashimi," or congee, which contain C. sinensis metacercariae. In humans, the C. sinensis metacercariae excyst in the duodenum, and juvenile flukes migrate up via bile chemotaxis into bile ducts. Once there, C. sinensis provokes hyperplasia of the bile duct epithelium, obstructive jaundice, ascites, liver enlargement and cirrhosis, and infrequent cholangiocarcinoma (CCA). Although the association between C. sinensis infection and CCA has been firmly established in past decades, the underlying mechanisms are not elucidated in detail. In the context of chronic clonorchiasis-associated hepatobiliary aberrations, the constitutive disruption of redox homeostasis and dysregulation of physiological signaling pathways may promote the malignant transformation of cholangiocytes, thus leading to substantial acquisition of a more aggressive phenotype by these cells: CCA. With advances of genomic and molecular biological approaches, diverse C. sinensis proteins that are essential for parasite physiology and pathogenicity have been identified and characterized. Some of the proteins have been considered as attractive targets for development of vaccines and chemotherapeutics. Candidate antigens for reliable serodiagnosis of clonorchiasis have been studied.
Collapse
|
3
|
Pirovich D, Da'dara AA, Skelly PJ. Why Do Intravascular Schistosomes Coat Themselves in Glycolytic Enzymes? Bioessays 2019; 41:e1900103. [PMID: 31661165 DOI: 10.1002/bies.201900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Schistosomes are intravascular parasitic helminths (blood flukes) that infect more than 200 million people globally. Proteomic analysis of the tegument (skin) of these worms has revealed the surprising presence of glycolytic enzymes on the parasite's external surface. Immunolocalization data as well as enzyme activity displayed by live worms confirm that functional glycolytic enzymes are indeed expressed at the host-parasite interface. Since these enzymes are traditionally considered to function intracellularly to drive glycolysis, in an extracellular location they are hypothesized to engage in novel "moonlighting" functions such as immune modulation and blood clot dissolution that promote parasite survival. For instance, several glycolytic enzymes can interact with plasminogen and promote its activation to the thrombolytic plasmin; some can inhibit complement function; some induce B cell proliferation or macrophage apoptosis. Several pathogenic bacteria and protists also express glycolytic enzymes externally, suggesting that moonlighting functions of extracellular glycolytic enzymes can contribute broadly to pathogen virulence. Also see the video abstract here https://youtu.be/njtWZ2y3k_I.
Collapse
Affiliation(s)
- David Pirovich
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Akram A Da'dara
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Patrick J Skelly
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
4
|
González-Miguel J, Valero MA, Reguera-Gomez M, Mas-Bargues C, Bargues MD, Simón F, Mas-Coma S. Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology 2019; 146:284-298. [PMID: 30246668 PMCID: PMC6402360 DOI: 10.1017/s0031182018001464] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Human fascioliasis is a worldwide, pathogenic food-borne trematodiasis. Impressive clinical pictures comprising puzzling polymorphisms, manifestation multifocality, disease evolution changes, sequelae and mortality, have been reported in patients presenting with neurological, meningeal, neuropsychic and ocular disorders caused at distance by flukes infecting the liver. Proteomic and mass spectrometry analyses of the Fasciola hepatica excretome/secretome identified numerous, several new, plasminogen-binding proteins enhancing plasmin generation. This may underlie blood-brain barrier leakage whether by many simultaneously migrating, small-sized juvenile flukes in the acute phase, or by breakage of encapsulating formations triggered by single worm tracks in the chronic phase. Blood-brain barrier leakages may subsequently occur due to a fibrinolytic system-dependent mechanism involving plasmin-dependent generation of the proinflammatory peptide bradykinin and activation of bradykinin B2 receptors, after different plasminogen-binding protein agglomeration waves. Interactions between diverse parasitic situations and non-imbalancing fibrinolysis system alterations are for the first time proposed that explain the complexity, heterogeneity and timely variations of neurological disorders. Additionally, inflammation and dilation of blood vessels may be due to contact system-dependent generation bradykinin. This baseline allows for search of indicators to detect neurological risk in fascioliasis patients and experimental work on antifibrinolytic treatments or B2 receptor antagonists for preventing blood-brain barrier leakage.
Collapse
Affiliation(s)
- J. González-Miguel
- Laboratorio de Parasitología, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M. A. Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - C. Mas-Bargues
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez No. 15, 46010 Valencia, Spain
| | - M. D. Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - F. Simón
- Área de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Av. Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - S. Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Plasminogen-binding proteins as an evasion mechanism of the host's innate immunity in infectious diseases. Biosci Rep 2018; 38:BSR20180705. [PMID: 30166455 PMCID: PMC6167496 DOI: 10.1042/bsr20180705] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Pathogens have developed particular strategies to infect and invade their hosts. Amongst these strategies’ figures the modulation of several components of the innate immune system participating in early host defenses, such as the coagulation and complement cascades, as well as the fibrinolytic system. The components of the coagulation cascade and the fibrinolytic system have been proposed to be interfered during host invasion and tissue migration of bacteria, fungi, protozoa, and more recently, helminths. One of the components that has been proposed to facilitate pathogen migration is plasminogen (Plg), a protein found in the host’s plasma, which is activated into plasmin (Plm), a serine protease that degrades fibrin networks and promotes degradation of extracellular matrix (ECM), aiding maintenance of homeostasis. However, pathogens possess Plg-binding proteins that can activate it, therefore taking advantage of the fibrin degradation to facilitate establishment in their hosts. Emergence of Plg-binding proteins appears to have occurred in diverse infectious agents along evolutionary history of host–pathogen relationships. The goal of the present review is to list, summarize, and analyze different examples of Plg-binding proteins used by infectious agents to invade and establish in their hosts. Emphasis was placed on mechanisms used by helminth parasites, particularly taeniid cestodes, where enolase has been identified as a major Plg-binding and activating protein. A new picture is starting to arise about how this glycolytic enzyme could acquire an entirely new role as modulator of the innate immune system in the context of the host–parasite relationship.
Collapse
|
6
|
Improved genomic resources and new bioinformatic workflow for the carcinogenic parasite Clonorchis sinensis: Biotechnological implications. Biotechnol Adv 2018; 36:894-904. [DOI: 10.1016/j.biotechadv.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
|
7
|
Huang Y, Li W, Liu K, Xiong C, Cao P, Tao J. New detection method in experimental mice for schistosomiasis: ClinProTool and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasitol Res 2016; 115:4173-4181. [PMID: 27469535 DOI: 10.1007/s00436-016-5193-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 01/15/2023]
Abstract
Oncomelania hupensis snails along the Yangtze River and the low positive rate and infectiosity of human and livestock schistosomiasis still pose a threat to public health in China. Adult blood flukes were recognized as Schistosoma japonicum, which are found in the portal system of the sentinel mice bred in the laboratory for 35 days after contact with the water. However, 35 days was too long from the field test to dissection, and the dissection in the laboratory was also time-consuming and labor-intensive. Serum peptides in mice at different times after infection were measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ClinProTool was used to establish the proteomic detection pattern (PDP), based on the differentially expressed peptide between the infection and healthy control groups. Under experimental conditions, characteristic PDP were detected in 5 % (3/60), 35 % (21/60), 75 % (45/60), 87.93 % (51/58), and 98.15 % (53/54) of infected mice from weeks 1 to 5 post-infection, whereas ELISA and dissection examination for adult blood flukes missed the first 2 weeks. At 35 days post-infection, the infectiosity assay showed 40 % (4/10), 50 % (5/10), and 80 % (8/10) positivity with the PDP test in mice infected with 4, 6, and 10 cercariae, respectively, as well as 100 % (10/10) positivity in mice infected with 14, 18, and 22 cercariae. Five stored sera of positive sentinel mice with parasite detection were verified correctly in the PDP test. The results confirm that PDP can be used as a rapid and early detection method for S. japonicum infection in experimental mice, which are expected to apply in early surveillance for schistosomiasis.
Collapse
Affiliation(s)
- Yuzheng Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, 100 Hongshan road, Nanjing, Jiangsu, 210028, China
| | - Wei Li
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Diseases Prevention and Control, Ministry of Health, Wuxi, Jiangsu, 214064, China
| | - Kun Liu
- Johns Hopkins Malaria Research Institute, Department Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, USA.,Present affiliation: US Food and Drug Administration, Pacific Regional Laboratory Northwest, 22201 23rd DR SE, Bothell, WA, 98021, USA
| | - Chunrong Xiong
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Diseases Prevention and Control, Ministry of Health, Wuxi, Jiangsu, 214064, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, 100 Hongshan road, Nanjing, Jiangsu, 210028, China.
| | - Jianping Tao
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Major Animal Infectious Diseases and Zoonoses, Yangzhou University, 12 Wenhui road, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Gadahi JA, Wang S, Bo G, Ehsan M, Yan R, Song X, Xu L, Li X. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP) Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles. PLoS One 2016; 11:e0159796. [PMID: 27467391 PMCID: PMC4965049 DOI: 10.1371/journal.pone.0159796] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/09/2016] [Indexed: 02/06/2023] Open
Abstract
Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO) distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Gao Bo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
9
|
González-Miguel J, Siles-Lucas M, Kartashev V, Morchón R, Simón F. Plasmin in Parasitic Chronic Infections: Friend or Foe? Trends Parasitol 2016; 32:325-335. [PMID: 26775037 DOI: 10.1016/j.pt.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Plasmin is the final product of the fibrinolytic system, the physiological mechanism responsible for dissolving fibrin clots. Its broad-range proteolytic activity implies that interaction with fibrinolysis and recruitment of plasmin by blood and tissue parasites is an important mechanism that mediates the invasion and establishment of this kind of pathogen in the hosts. However, recent studies have linked an excess of plasmin generated by this interaction with serious pathological events at the vascular level, including the proliferation and migration of arterial wall cells, inflammation, and degradation of the extracellular matrix. Therefore, we present data that support the need to reconsider the role of plasmin, as well as its benefits or drawbacks, in the context of host-parasite relations.
Collapse
Affiliation(s)
- Javier González-Miguel
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain.
| | | | - Vladimir Kartashev
- Department of Infectious Diseases, Rostov State Medical University, Rostov-na-Donu, Russia
| | - Rodrigo Morchón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|