1
|
Fikru S, Tolossa K, Lindemann P, Bucar F, Asres K. Larvicidal, Ovicidal, and Repellent Activities of Leucas stachydiformis (Hochst. ex Benth.) Briq Essential Oil against Anopheles arabiensis. J Trop Med 2024; 2024:1051086. [PMID: 38586242 PMCID: PMC10997417 DOI: 10.1155/2024/1051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Larvicidal, ovicidal, and repellent activities of the essential oil extracted by hydrodistillation from the leaves of the endemic Ethiopian plant Leucas stachydiformis (Hochst. ex Benth.) Briq were investigated against Anopheles arabiensis, the dominant malaria vector species in Ethiopia with the objective of searching for a plant-based malaria vector control strategy from medicinal plants. The larvicidal effect was tested against the fourth instar An. arabiensis wild larvae whilst freshly laid ova of An. arabiensis were used to determine the ovicidal activity of the essential oil at concentrations ranging from 6.25 to 400 ppm. Concentrations of 41.6-366.7 µg/cm2 were used to evaluate the repellent activity of the essential oil on 3-5 days old adult female An. arabiensis. The oil composition of L. stachydiformis was also analyzed using GC-MS. The study revealed that the oil possesses the highest larvicidal activity at 400 ppm and 200 ppm after 24 h and 48 h of treatment. LC50 values for the fourth larval instar after 24 h and 48 h of treatment were 43.4 ppm and 34.2 ppm, respectively. After 72 h of exposure, the oil displayed 100% ovicidal activity at 400 ppm with an IH50 value of 32.2 ppm. In the repellency test, at concentrations of 366.7, 133.3, and 41.6 µg/cm2, the oil gave a total percentage protection of 67.9 ± 4.2%, 37.2 ± 2.8%, and 32 ± 2.2%, respectively, for 4 h. The highest concentration (366.7 µg/cm2) gave 100% protection up to 90 min. GC-MS analysis of the oil revealed the presence of 24 compounds representing 90.34% of the total oil with caryophyllene oxide, germacrene D, and trans-caryophyllene constituting more than 50% of its components. Results of the present study suggest that the essential oil of L. stachydiformis has the potential to be used for the control of An. arabiensis mosquitoes.
Collapse
Affiliation(s)
- Sisay Fikru
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Ketema Tolossa
- Endod and Other Medicinal Plants Research Unit, Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Peter Lindemann
- Institut für Pharmazie, Martin Luther Universität Halle Wittenberg, Hoher Weg 8, Halle D-06120, Germany
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Narayanan M, Priya S, Natarajan D, Alahmadi TA, Alharbi SA, Krishnan R, Chi NTL, Pugazhendhi A. Phyto-fabrication of Silver nanoparticle using leaf extracts of Aristolochia bracteolata Lam and their mosquito larvicidal potential. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5359669. [PMID: 35497931 PMCID: PMC9050289 DOI: 10.1155/2022/5359669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Background. Albizialebbeck is a deciduous tree having tremendous medicinal utilities, for example, respiratory, skin, gastrointestinal, oral disorders, eye, urinary, genital, anorectal, inflammatory, and neurological disorders, and venereal diseases. Several studies have been undertaken on the medicinal and traditional values of A. lebbeck. Objective. The detailed information about its medicinal uses and pharmacological implications is highly scattered and distributed in different data sources. Hence, the study was conducted to supply an inclusive review of its ethnomedicinal uses, phytochemicals, and the available pharmacological attributes supporting its efficiency in traditional medicine. Method. Literature surveys were conducted on this medicinal plant via search engines like Google Scholar, PubMed, and Science Direct, and obtained information up to December 2020 has been assessed and analyzed for this study. Results. Systematic investigation revealed that A. lebbeck consists of various phytochemicals, including major alkaloids, flavonoids, saponins, and terpenoids. Its crude extract, fraction, and bioactive compounds exhibited potent adulticidal, antiallergic, anticancer, anticonvulsant, antidiabetic, antidiarrheal, anti-inflammatory, antimicrobial, antinociceptive, antioxidant, antiparasitic, antipyretic, antivenom, estrogenic, neuroprotective, nootropic, ovicidal, and wound healing activities. Conclusions. This study proposes that A. lebbeck remains a rich source of phytochemicals with various biological activities which possess outstanding therapeutic benefits to humanity across the world. However, studies are required to estimate the potential side effects. Moreover, mechanistic physiognomies of the isolated compounds with known bioactivities are quite limited; thus, forthcoming research needs to focus on the mechanisms of these active phytochemicals to facilitate their potential enrolling for drug discovery.
Collapse
|
4
|
Sukumaran S, Maheswaran R. Larvicidal Activity of Elytraria acaulis against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Arthropod Borne Dis 2021; 14:293-301. [PMID: 33644243 PMCID: PMC7903361 DOI: 10.18502/jad.v14i3.4563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background Mosquitoes are blood sucking arthropods and serve as vectors of many diseases causing serious health problems to human beings. Culex quinquefasciatus and Aedes aegypti were responsible for Filariasis and Dengue. Synthetic pesticides were effective against mosquitoes as well as main sources of environmental pollution and most of them are immunosuppressant. Botanicals were widely used as insecticides, growth disruptors, repellents, etc. The aim of this research was to determine larvicidal properties of powdered leaf, Elytraria acaulis against late third or early fourth in-star larvae of Cx. quinquefasciatus and Ae. aegypti. Methods Larvae of Cx. quinquefasciatus and Ae. aegypti were tested at various concentrations of 100, 120, 140, 160, 180 and 200mg/100ml and mortality was recorded after 24h. The LC50 values of the E. acaulis leaf powder were calculated by Probit analysis. Results The plant powder exhibited strong larvicidal activity against Cx. quinquefasciatus with LC50 value of 116.07mg/100ml against Ae. aegypti 124.25mg/100ml respectively. The result indicated that the plant powder of E. acaulis showed potential larvicidal activity against Cx. quinquefasciatus and Ae. aegypti. Conclusion The overall findings of the present investigation suggested that the E. acaulis highly effective against Cx. quinquefasciatus and Ae. aegypti larvae. Elytraria acaulis may be used as an alternative to synthetic chemical pesticides for control of vectors to reduce vector borne diseases and did not harm to total environment.
Collapse
Affiliation(s)
- Soorya Sukumaran
- Department of Zoology, Entomology Laboratory, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Rajan Maheswaran
- Department of Zoology, Entomology Laboratory, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
5
|
Fernandes DA, Rique HL, de Oliveira LHG, Santos WGS, de Souza MDFV, Nunes FDC. Ovicidal, pupicidal, adulticidal, and repellent activity of Helicteres velutina K. Schum against Aedes aegypti L. (Diptera: Culicidae). BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2021; 43:e112120. [PMID: 35749063 PMCID: PMC9179187 DOI: 10.29374/2527-2179.bjvm112120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 11/11/2022] Open
Abstract
Aedes aegypti is a vector of emerging and neglected diseases, such as dengue, chikungunya, and Zika. Helicteres velutina, known as "pitó" in Brazil, is traditionally used as an insect repellent, and several studies have demonstrated its larvicidal activity. The aim of this study was to investigate this species and evaluate its potential ovicidal, pupicidal, adulticidal, and repellent activity. The viability of the eggs was evaluated using different concentrations of the test substances for 25 days. The hexane fraction killed 72.7% of the eggs, while dichloromethane killed 67.7%. The survival of the pupae and adults was verified after 72 h and 48 h, respectively. The LC50 for the hexane and dichloromethane fractions was 0.12 mg/mL and 8.85 mg/mL for pupae, 8.01 mg/mL and 0.74 mg/mL for adults (tarsal test), and 0.05 mg/mL and 0.23 mg/mL for adults (body test), respectively. Repellency was assessed for 240 min using neonatal Wistar rats on a Y-tube olfactometer. The hexane fraction attracted mosquitoes to the test chamber, while the dichloromethane fraction had a repellent action. The 7,4'-di-O-methyl-8-O-sulfate flavone provides greater repellency, and this finding is similar to the results of the in silico studies that have shown the potential of this substance against adult mosquitoes. This suggests that 7,4'-di-O-methyl-8-O-sulfate flavone may be one of the substances present in the extract from aerial parts of H. velutina that is responsible for the repellent activity mentioned in traditional medicine. These findings provide a better understanding of the insecticidal and repellent activity of the extract, fraction, and compounds isolated from H. velutina against Ae. aegypti, thereby revealing its potential in the development of a more effective botanical insecticide.
Collapse
Affiliation(s)
- Diégina Araújo Fernandes
- Pharmacist, MSc. Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brasil.
| | - Hyago Luiz Rique
- Curso de Graduação em Biotecnologia, UFPB, João Pessoa, PB, Brasil.
| | | | | | | | - Fabiola da Cruz Nunes
- Veterinarian, DSc. Departamento de Biologia Celular e Molecular, UFPB, João Pessoa, PB, Brasil.
- Correspondence Fabiola da Cruz Nunes Departamento de Biologia Molecular, Universidade Federal da Paraíba - UFPB Centro de Biotecnologia, Campus I - Lot. Cidade Universitaria, Campus João Pessoa CEP 58051-970 - João Pessoa (PB), Brasil E-mail:
| |
Collapse
|
6
|
Verma S, Rozera R, Kumar R, Haque A, Attri A. Herbal remedies, vaccines and drugs for dengue fever: Emerging prevention and treatment strategies. ASIAN PAC J TROP MED 2019. [DOI: 10.4103/1995-7645.257113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Chansang A, Champakaew D, Junkum A, Jitpakdi A, Amornlerdpison D, Aldred AK, Riyong D, Wannasan A, Intirach J, Muangmoon R, Pitasawat B. Synergy in the adulticidal efficacy of essential oils for the improvement of permethrin toxicity against Aedes aegypti L. (Diptera: Culicidae). Parasit Vectors 2018; 11:417. [PMID: 30005688 PMCID: PMC6045857 DOI: 10.1186/s13071-018-3001-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In a previous screening program for mosquitocides from local edible plants in Thailand, essential oils (EOs) of Cyperus rotundus, Alpinia galanga and Cinnamomum verum, were found to possess promising adulticidal activity against Aedes aegypti. With the aim of reducing usage of conventional insecticides and improving the management of resistant mosquito populations, this study was designed to determine the potential synergism in the adulticidal efficacy of EOs on permethrin toxicity against Ae. aegypti, both pyrethroid-resistant and -susceptible strains. METHODS EOs extracted from rhizomes of C. rotundus and A. galanga as well as C. verum barks were evaluated for chemical compositions and adulticidal activity against Muang Chiang Mai-susceptible (MCM-S) and Pang Mai Dang-resistant (PMD-R) strains of Ae. aegypti. Adulticidal bioassays of EO-permethrin mixtures for synergistic activity were also performed on these Ae. aegypti strains. RESULTS Chemical characterization by the GC-MS analytical technique demonstrated that 48 compounds were identified from the EOs of C. rotundus, A. galanga and C. verum, representing 80.22%, 86.75% and 97.24%, respectively, of all compositions. Cyperene (14.04%), β-bisabolene (18.27%) and cinnamaldehyde (64.66%) were the main constituents of C. rotundus, A. galanga and C. verum oils, respectively. In adulticidal bioassays, EOs of C. rotundus, A. galanga and C. verum were effective in killing Ae. aegypti, both MCM-S and PMD-R strains, with LD50 values of 10.05 and 9.57 μg/mg female, 7.97 and 7.94 μg/mg female, and 3.30 and 3.22 μg/mg female, respectively. The adulticidal efficacy against MCM-S and PMD-R Ae. aegypti of these EOs was close to that of piperonyl butoxide (PBO, LD50 values = 6.30 and 4.79 μg/mg female, respectively) but less pronounced than that of permethrin (LD50 values = 0.44 and 3.70 ng/mg female, respectively). Nevertheless, combination-based bioassays discovered the accomplished synergism of EOs together with permethrin. Significant synergistic effects with permethrin against both the strains of Ae. aegypti were recorded in the EOs of C. rotundus and A. galanga. Addition of C. rotundus and A. galanga oils decreased the LD50 values of permethrin against MCM-S dramatically from 0.44 to 0.07 and 0.11 ng/mg female, respectively, with synergism ratio (SR) values of 6.28 and 4.00, respectively. Furthermore, EOs of C. rotundus and A. galanga also reduced the LD50 values of permethrin against PMD-R drastically from 3.70 to 0.42 and 0.003 ng/mg female, respectively, with SR values of 8.81 and 1233.33, respectively. CONCLUSIONS The synergy of enhanced adulticidal toxicity recorded from EO-permethrin combinations against both strains of Ae. aegypti presents a promising role of EOs as a synergist for improving mosquitocidal efficacy, particularly in situations where conventional compounds are ineffective or inappropriate.
Collapse
Affiliation(s)
- Arpaporn Chansang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
- Graduate PhD’s Degree Program in Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Danita Champakaew
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
- Graduate PhD’s Degree Program in Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Atchariya Jitpakdi
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290 Thailand
| | - Arunee Kongdee Aldred
- Program in Chemistry, Faculty of Science, Maejo University, Chiang Mai, 50290 Thailand
| | - Doungrat Riyong
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Anchalee Wannasan
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jitrawadee Intirach
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
- Graduate PhD’s Degree Program in Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Roongtawan Muangmoon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
- Graduate PhD’s Degree Program in Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Benjawan Pitasawat
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
8
|
Deepak P, Sowmiya R, Ramkumar R, Balasubramani G, Aiswarya D, Perumal P. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2017; 45:990-998. [PMID: 27327539 DOI: 10.1080/21691401.2016.1198365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The silver nanoparticles synthesized from Turbinaria ornata (To-AgNPs) showed spherical with crystalline nature (20-32 nm) was evaluated against fourth instar larvae of three mosquitoes. The maximum activity of To-AgNPs was recorded on Aedes aegypti followed by Anopheles stephensi and Culex quinquefasciatus with the following lethal concentration values (μg/ml): LC50 of 0.738, 1.134, and 1.494; and LC90 of 3.342, 17.982, and 22.475, respectively. The obtained respective values (μg/ml) vis-a-vis aqueous extract (To-AE) were: 2.767 and 40.577; 4.347 and 158.399, and 7.351 and 278.994. The findings revealed that To-AgNPs could form a base for the development of an eco-friendly, low-cost pesticide.
Collapse
Affiliation(s)
- Paramasivam Deepak
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Rajamani Sowmiya
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Rajendiran Ramkumar
- b Department of Biotechnology , Padmavani Arts & Science College for Women , Salem , Tamil Nadu , India
| | - Govindasamy Balasubramani
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Dilipkumar Aiswarya
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Pachiappan Perumal
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| |
Collapse
|
9
|
Ahmed MAI, Vogel CFA. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito. Acta Trop 2016; 155:1-5. [PMID: 26672383 DOI: 10.1016/j.actatropica.2015.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/17/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The synergistic action of octopamine receptor agonists (OR agonists) on many insecticide classes (e.g., organophosphorus, pyrethroids, and neonicotinoids) on Aedes aegypti L. has been reported recently. An investigation of OR agonist's effect on insect growth regulators (IGRs) was undertaken to provide a better understanding of the mechanism of action. Based on the IGR bioassay, pyriproxyfen was the most potent IGR insecticide tested (EC50=0.0019ng/ml). However, the lethal toxicity results indicate that diafenthiuron was the most potent insecticide (LC50=56ng/cm(2)) on A. aegypti adults after 24h of exposure. The same trend was true after 48 and 72h of exposure. Further, the synergistic effects of OR agonists plus amitraz (AMZ) or chlordimeform (CDM) was significant on adults. Among the tested synergists, AMZ increased the potency of the selected IGRs on adults the greatest. As results, OR agonists were largely synergistic with the selected IGRs. OR agonists enhanced the lethal toxicity of IGRs, which is a valuable new tool in the field of A. aegypti control. However, further field experiments need to be done to understand the unique potential role of OR agonists and their synergistic action on IGRs.
Collapse
Affiliation(s)
- Mohamed Ahmed Ibrahim Ahmed
- Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; Center for Health and the Environment, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Christoph Franz Adam Vogel
- Center for Health and the Environment, One Shields Avenue, University of California, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 2015; 114:3201-12. [DOI: 10.1007/s00436-015-4656-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023]
|