1
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
2
|
Zhang XH, Huang D, Li YL, Chang B. Novel mechanism of hepatobiliary system damage and immunoglobulin G4 elevation caused by Clonorchis sinensis infection. World J Clin Cases 2021; 9:6639-6653. [PMID: 34447811 PMCID: PMC8362508 DOI: 10.12998/wjcc.v9.i23.6639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Clonorchis sinensis infection is still a major public health problem. It is estimated that more than 15 million people worldwide are infected, especially in Northeast China, Taiwan, South Korea, and North Vietnam. The detection of Clonorchis sinensis eggs in feces and bile is still the only gold standard for the diagnosis of Clonorchis sinensis infection, and new detection methods are needed to improve the detection rate. After Clonorchis sinensis invades the human body, it mainly parasitizes the hepatobiliary tract. Therefore, it is closely related to hepatobiliary diseases such as cholangitis, bile duct stones, liver fibrosis, and cholangiocarcinoma. The increase in immunoglobulin G4 (IgG4) caused by Clonorchis sinensis infection is rare and there are few reports about the relevant mechanism. It may be related to the inflammatory factors interleukin (IL)-4, IL-10, and IL-13 produced by human phagocytes, T cells, B cells, and other immune cells in the process of resisting the invasion of Clonorchis sinensis. However, this finding still needs further clarification and confirmation. This article reviews the epidemiology, clinical manifestations, serology, imaging, pathogenic mechanism, and control measures of Clonorchis sinensis infection to help establish the diagnostic process for Clonorchis sinensis. We report novel mechanisms of IgG4 elevation due to Clonorchis sinensis infection to provide more experience and a theoretical basis for clinical diagnosis and treatment of this infection.
Collapse
Affiliation(s)
- Xin-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Die Huang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
3
|
Wang N, Bai X, Jin X, Tang B, Yang Y, Sun Q, Li S, Wang C, Chang Q, Liu M, Liu X. The dynamics of select cellular responses and cytokine expression profiles in mice infected with juvenile Clonorchis sinensis. Acta Trop 2021; 217:105852. [PMID: 33548205 DOI: 10.1016/j.actatropica.2021.105852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
Clonorchiasis is a zoonotic disease that can result in chronic infection in humans. The causative agent, Clonorchis sinensis (C. sinensis), is believed to primarily induce a Th2 immune response in infected mice. However, few studies have profiled host immune responses to C. sinensis infection during the juvenile phase. In the present study, the dynamics of select cellular responses and cytokine expression profiles during juvenile C. sinensis infection were investigated. The flow cytometry results showed that the CD4+ T cells percentage was significantly decreased between 12 days post-infection (dpi) and 24 dpi in the peripheral blood, and the CD8+ T cells percentage was significantly elevated after 3 dpi. The ratio of CD4+/CD8+ T cells was also significantly decreased after 3 dpi. Furthermore, we observed that the proportion of CD14+ monocyte-macrophages in the peripheral blood was significantly increased between 1 dpi and 12 dpi and peaked at 6 dpi. The percentage of classically activated macrophages (M1) and alternatively activated macrophages (M2) in the liver was significantly increased between 18 dpi and 30 dpi. qRT-PCR results showed that the expression levels of iNOS in the liver were significantly elevated after 3 dpi, and Arg-1 expression was significantly increased beginning at 12 dpi. ELISA results showed that the serum levels of the Th1 cytokines IFN-γ and IL-2 peaked at 6 dpi and decreased thereafter. Furthermore, the Th2 cytokines IL-4 and IL-13 began to be expressed and peaked at 24 dpi and 30 dpi, respectively. In addition, the levels of the Treg cytokines IL-10 and TGF-β1 were significantly increased beginning at 6 dpi until 30 dpi. In the liver homogenate, the expression of IFN-γ, IL-2, and IL-4 mainly occurred before 6 dpi. IL-13 expression was significantly increased at 30 dpi. IL-10 and TGF-β1 levels were significantly increased at 12 dpi and 24 dpi, and expression peaked at 24 dpi and 30 dpi, respectively. This study provides a fundamental characterization for the future analysis of host-parasite interactions and immune responses in hosts infected with juvenile C. sinensis.
Collapse
|
4
|
Chen JJ, He YS, Zhong XJ, Cai ZL, Lyu YS, Zhao ZF, Ji K. Ribonuclease T2 from Aspergillus fumigatus promotes T helper type 2 responses through M2 polarization of macrophages. Int J Mol Med 2020; 46:718-728. [PMID: 32468025 PMCID: PMC7307867 DOI: 10.3892/ijmm.2020.4613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an allergic immunological response to Aspergillus fumigatus (Af) exposure, which induces a strong T helper 2 (Th2) response via mechanisms that have yet to be elucidated. The aim of the present study was to investigate the hypothesis that T2 ribonuclease from Af (Af RNASET2) induces M2‑type macrophage polarization to produce a T helper 2 (Th2) immune response. Recombinant Af RNASET2 (rAf RNASET2) was expressed and purified in a prokaryotic pET system and BALB/c mice were immunized with rAf RNASET2 for in vivo analyses. Expression levels of M2 polarization factors were evaluated in RAW264.7 macrophages treated with rAf RNASET2 in vitro using flow cytometry, reverse transcription‑quantitative PCR, and western blot analysis. The results predicted that the mature Af RNASET2 protein (382 amino acids; GenBank no. MN593022) contained two conserved amino acid sequence (CAS) domains, termed CAS‑1 and CAS‑2, which are also characteristic of the RNASET2 family proteins. The protein expression levels of the Th2‑related cytokines interleukin (IL)‑4, IL‑10, and IL‑13 were upregulated in mice immunized with rAf RNASET2. RAW264.7 macrophages treated with rAf RNASET2 showed increased mRNA expression levels of M2 factors [arginase 1, Il‑10, and Il‑13]; however, there was no difference in cells treated with rAf RNASET2 that had been inactivated with a ribonuclease inhibitor (RNasin). The protein expression levels of IL‑10 in macrophage culture supernatant were also increased following stimulation with rAf RNASET2. In addition, rAf RNASET2 upregulated the expression of phosphorylated mitogen activated protein kinases (MAPKs) in RAW264.7 cells, whereas MAPK inhibitors attenuated rAf RNASET2‑induced IL‑10 expression in RAW264.7 cells. In conclusion, the present study reveals that high rAf RNASET2 activity is required for rAf RNASET2‑induced M2 polarization of macrophages and suggests an important immune regulatory role for Af RNASET2 in ABPA pathogenesis.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xiao-Jun Zhong
- Central Laboratory, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518083, P.R. China
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yan-Si Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
5
|
Shang M, Sun H, Wu Y, Gong Y, Tang Z, Meng F, He L, Yu X, Huang Y, Li X. In vivo and in vitro studies using Clonorchis sinensis adult-derived total protein (CsTP) on cellular function and inflammatory effect in mouse and cell model. Parasitol Res 2020; 119:1641-1652. [PMID: 32285266 DOI: 10.1007/s00436-020-06651-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Clonorchis sinensis (C. sinensis) can induce a food-borne parasitic disease (clonorchiasis). Numerous studies have analyzed functional proteins, immunologic factors, pro-inflammatory cytokines, and cell signaling transduction that promote the development of clonorchiasis. In a previous study, it was shown that C. sinensis adult-derived total protein (CsTP) might be involved in the pathogenesis and development of liver fibrosis via bringing about Th2 immune response. In the present study, further investigation of CsTP on cellular function and inflammatory effect in vitro and in vivo has been elicited. CsTP induced inflammation and autophagy as evidenced by upregulation of TNF-α, IFN-γ, and autophagic markers LC3B and P62. Exposed to CsTP upregulated the antiapoptotic gene Bcl-2 expression, diminished the apoptosis induced by H2O2, but promoted the proliferation and migration of LX-2 cells in proper concentration range. Additionally, the protein levels of p-AKT and p-mTOR were repressed in response to CsTP, suggesting a correlation of blocking the activation of mTOR/AKT signaling pathway. These results revealed that CsTP might exacerbate hepatic pathological changes by regulating cell proliferation, apoptosis, autophagy, and inflammation in the liver and LX-2 cells. Some effects might be partially involved in the mTOR and AKT pathways.
Collapse
Affiliation(s)
- Mei Shang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hengchang Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yu Gong
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
6
|
Chung E, Kim YJ, Lee MR, Cho SH, Ju JW. A 21.6 kDa tegumental protein of Clonorchis sinensis induces a Th1/Th2 mixed immune response in mice. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:435-447. [PMID: 30298703 PMCID: PMC6247233 DOI: 10.1002/iid3.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022]
Abstract
Introduction Clonorchis sinensis is a major parasite affecting the Korea population. Despite the high infection rate and pathogenicity, very few studies have been conducted to investigate the immune responses against the proteins of C. sinensis. Methods In this study, in vitro immune response induced by a recombinant 21.6 kDa tegumental protein derived from C. sinensis (rCsTegu21.6) was confirmed in murine dendritic cells and T cells. For the in vivo analysis, each mouse was immunized three times. Total serum IgG and T cell cytokine production were determined by ELISA, while T cell proliferation was detected by a WST (Water‐Soluble Tetrazolium salt)‐1 assay. Results In vitro tests indicated that rCsTegu21.6 treatment increased the expression of surface molecules, such as CD40 (77%), CD80 (52%) and CD86 (46%), on murine dendritic cells and the secretion of cytokines (TNF‐α, IL‐6, IL‐1β, IL‐10, and IL‐12p70). Moreover, co‐culturing dendritic cells activated by rCsTegu21.6 with allogenic T cells induced T cell proliferation over time. rCsTegu21.6 also stimulated specific antibody production and cytokine secretion [IL‐2, IL‐4, and interferon (IFN)‐γ)] from T cells following immunization in vivo. Notably, rCsTegu21.6 predominantly induced IgG1 production and secretion of the Th2 cytokine IL‐4, regardless of the type of adjuvant used. Conclusion These results serve as a foundation for the development of tegumental protein‐based vaccines against C. sinensis.
Collapse
Affiliation(s)
- EunJoo Chung
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Yu Jung Kim
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Myoung-Ro Lee
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Jung-Won Ju
- Division of Vectors and Parasitic Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| |
Collapse
|
7
|
Clonorchis sinensis adult-derived proteins elicit Th2 immune responses by regulating dendritic cells via mannose receptor. PLoS Negl Trop Dis 2018; 12:e0006251. [PMID: 29505573 PMCID: PMC5854424 DOI: 10.1371/journal.pntd.0006251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/15/2018] [Accepted: 01/18/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clonorchis sinensis (C. sinensis) is the most widespread human liver fluke in East Asia including China and Korea. Clonorchiasis as a neglected tropical zoonosis, leads to serious economic and public health burden in China. There are considerable evidences for an etiological relation between chronic clonorchiasis and liver fibrosis in human beings. Liver fibrosis is a highly conserved and over-protected response to hepatic tissue injury. Immune cells including CD4+ T cell as well as dendritic cell (DC), and pro-fibrogenic cytokines like interleukin 4 (IL-4), IL-13 have been identified as vital manipulators in liver fibrogenesis. Our previous studies had a mere glimpse of T helper type 2 (Th2) dominant immune responses as key players in liver fibrosis induced by C. sinensis infection, but little is known about the involved mechanisms in this pathological process. METHODOLOGY/PRINCIPAL FINDINGS By flow cytometry (FACS), adult-derived total proteins of C. sinensis (CsTPs) down-regulated the expression of surface markers CD80, CD86 and major histocompatibility complex class II (MHC-II) on lipopolysaccharide (LPS) induced DC. ELISA results demonstrated that CsTPs inhibited IL-12p70 release from LPS-treated bone marrow-derived dendritic cells (BMDC). IL-10 level increased in a time-dependent manner in LPS-treated BMDCs after incubation with CsTPs. CD4+ T cells incubated with LPS-treated BMDCs plus CsTPs could significantly elevate IL-4 level by ELISA. Meanwhile, elevated expression of pro-fibrogenic mediators including IL-13 and IL-4 were detected in a co-culture system of LPS-activated BMDCs and naive T cells containing CsTPs. In vivo, CsTPs-immunized mice enhanced expression of type 2 cytokines IL-13, IL-10 and IL-4 in both splenocytes and hepatic tissue. Exposure of BMDCs to CsTPs activated expression of mannose receptor (MR) but not toll like receptor 2 (TLR2), TLR4, C-type lectin receptor DC-SIGN and Dectin-2 on the cell surface by RT-PCR and FACS. Blockade of MR almost completely reversed the capacity of CsTPs to suppress LPS-induced BMDCs surface markers CD80, CD86 and MHC-II expression, and further made these BMDCs fail to induce a Th2-skewed response as well as Th2 cell-associated cytokines IL-13 and IL-4 release in vitro. CONCLUSIONS/SIGNIFICANCE Collectively, we validated that CsTPs could suppress the maturation of BMDCs in the presence of LPS via binding MR, and showed that the CsTPs-pulsed BMDCs actively polarized naive T helper cells to Th2 cells though the production of IL-10 instead of IL-12. CsTPs endowed host with the capacity to facilitate Th2 cytokines production including IL-13 and IL-4 in vitro and vivo. The study might provide useful information for developing potential therapeutic targets against the disease.
Collapse
|
8
|
Zhou L, Shi M, Zhao L, Lin Z, Tang Z, Sun H, Chen T, Lv Z, Xu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis. Parasit Vectors 2017. [PMID: 28623940 PMCID: PMC5474055 DOI: 10.1186/s13071-017-2228-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. Methods A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Results Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. Conclusions CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 2016; 5:71. [PMID: 27384714 PMCID: PMC4933995 DOI: 10.1186/s40249-016-0166-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/30/2016] [Indexed: 01/14/2023] Open
Abstract
Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.
Collapse
Affiliation(s)
- Ze-Li Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China
| | - Xin-Bing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
10
|
Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients. PLoS Negl Trop Dis 2016; 10:e0004806. [PMID: 27348302 PMCID: PMC4922651 DOI: 10.1371/journal.pntd.0004806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Principal Findings Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Conclusions/Significance Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine. Clonorchiasis and hepatitis B infection are infectious diseases that affect millions of people worldwide, especially in China. These two diseases are caused by two different pathogens, C. sinensis and hepatitis B virus, respectively. Concurrent infection between HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. Both diseases share the same target organ, but there is little known on whether concomitant clonorchiasis could have an impact on HBV infection and the efficacy of antiviral treatment. In this study, we showed for the first time that co-infection with C. sinensis and HBV resulted in significantly higher liver transaminases levels as well as HBV DNA copies, indicating that co-infection with C. sinensis and HBV infection may aggravate the disease state. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Furthermore, excretory-secretory products (ESPs) of C. sinensis may have a potential role in promoting HBV viral replication. This may explain, at least in part, the higher HBV DNA copies observed in co-infected patients. Additionally, a mixture of ESP and HBV positive sera could induce PBMCs to mainly produce Th2 cytokines such as IL-4, IL-6 and IL-10 compared to HBV alone. A possible reason for higher HBV DNA copies and a weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance.
Collapse
|
11
|
Xu Y, Liang P, Bian M, Chen W, Wang X, Lin J, Shang M, Qu H, Wu Z, Huang Y, Yu X. Interleukin-13 is involved in the formation of liver fibrosis in Clonorchis sinensis-infected mice. Parasitol Res 2016; 115:2653-60. [PMID: 26993324 DOI: 10.1007/s00436-016-5012-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Clonorchiasis is a chronic infection disease often accompanied by formation of liver fibrosis. Previous study has identified that Clonorchis sinensis (C. sinensis, Cs) infection and CsRNASET2 (a member of CsESPs) immunization can drive Th2 immune response. IL-13, a multifunctional Th2 cytokine, has been widely confirmed to be profibrotic mediator. We want to determine whether IL-13 is involved in the generation of liver fibrosis during C. sinensis infection. A part of mice were infected with C. sinensis or immunized with CsRNASET2, respectively. Another part of mice were intravenously injected with rIL-13. Liver tissues of C. sinensis-infected mice were stained with hematoxylin-eosin and Masson's trichrome, respectively. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of infected mice and rIL-13-treated mice were measured by quantitative RT-PCR. Besides, splenocytes of C. sinensis-infected and CsRNASET2-immunized mice were isolated, respectively. The levels of IL-13 in splenocytes were detected by ELISA. Our results displayed that the livers of C. sinensis-infected mice had serious chronic inflammation and collagen deposition. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of C. sinensis-infected mice were obviously increased. Splenocytes from both C. sinensis-infected and CsRNASET2-immunized mice expressed high levels of IL-13. Moreover, rIL-13 treatment markedly promoted the transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1. These data implied that hepatic fibrosis was formed in the livers of C. sinensis-infected mice, and IL-13 induced by C. sinensis infection and CsRNASET2 immunization might favor this progression.
Collapse
Affiliation(s)
- Yanquan Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan, 571199, China
| | - Meng Bian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jinsi Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hongling Qu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|