1
|
Li YC, Inoue K, Zhang JY, Sato H. New records of three commercial fish hosts for two Unicapsula spp. and Kudoa megacapsula (Myxozoa: Myxosporea: Multivalvulida). Parasitol Res 2022; 121:3133-3145. [DOI: 10.1007/s00436-022-07584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
|
2
|
First report of three multivalvulid species (Cnidaria: Myxozoa: Myxosporea) in commercial fishes from Java Sea, Indonesia, with records of Unicapsula pyramidata and two new Kudoa spp. Parasitol Res 2021; 120:861-876. [PMID: 33511471 DOI: 10.1007/s00436-020-07030-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Commercial marine fishes caught locally in East Java, Indonesia, were examined for multivalvulid myxosporeans (Cnidaria: Myxozoa: Myxosporea). Plasmodia of Unicapsula pyramidata were detected in the trunk muscle of two fork-tailed threadfin breams (Nemipterus furcosus). Genetic comparisons of this sample to those collected in the Australian Coral Sea and South China Sea showed few nucleotide substitutions in the small subunit and large subunit ribosomal RNA gene (rDNA) with the species isolated in the Australian Coral Sea and South China Sea. Pseudocysts of two new Kudoa spp. with four shell valves and polar capsules were found in the trunk muscle of two shrimp scads Alepes djedaba and two flathead grey mullets Mugil cephalus. Kudoa javaensis n. sp. myxospores isolated from the shrimp scad were 5.1-7.2 (mean 6.2) μm thick, 6.2-7.9 (7.3) μm wide, and 4.6-6.3 (5.4) μm long, with polar capsules 1.9-2.5 (2.2) μm long and 1.1-1.4 (1.3) μm wide (n = 15). Kudoa surabayaensis n. sp. myxospores isolated from the flathead grey mullet were 5.8-6.7 (6.3) μm thick, 6.4-7.6 (6.9) μm wide, and 4.6-5.0 (4.7) μm long, with polar capsules 1.8-2.4 (2.1) μm long and 0.9-1.3 (1.1) μm wide (n = 25). These two Kudoa spp. showed critical differences in spore shapes (semiquadrate with unequal shell valves vs. equal shell valves), and absence vs. presence of uplifted shell valve termini. Nucleotide sequencing of rDNA supported the morphological differentiation of these two species. Furthermore, these two isolates were morphologically and phylogenetically distinct from any recorded Kudoa spp.
Collapse
|
3
|
Phylogenetic characterisation of seven Unicapsula spp. (Myxozoa: Myxosporea: Multivalvulida) from commercial fish in southern China and Japan. Parasitology 2019; 147:448-464. [PMID: 31875788 DOI: 10.1017/s0031182019001793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The myxozoan genus Unicapsula Davis, 1924 (Myxosporea: Multivalvulida: Trilosporidae) is characterized as having one functional polar capsule (PC) and two rudimentary PCs in a three-valved myxospore. The plasmodia of Unicapsula spp. grow either in the myofibres or in the gills, oesophageal walls and urinary organs of marine fish. Few studies have investigated the taxonomy of Unicapsula spp. including the type species Unicapsula muscularis. Accordingly, the taxonomy of the genus was explored in the present study by using 15 new isolates of seven Unicapsula spp. (U. muscularis, U. galeata, U. andersenae, U. pyramidata, U. pflugfelderi, and two new species) that had formed pseudocysts in the trunk myofibres of commercial fish collected in southern China and Japan from November 2015 to January 2019. Two new species Unicapsula trigona n. sp., and Unicapsula motomurai n. sp. exhibited unique myxospore morphologies (semi-triangular and spherical myxospores, respectively) and 18S and 28S rDNA sequences that were distinct from those of the other Unicapsula spp. Phylogenetic analysis of the 18S and 28S rDNA sequences confirmed the monophyletic status of Unicapsula.
Collapse
|
4
|
Scheifler M, Ruiz-Rodríguez M, Sanchez-Brosseau S, Magnanou E, Suzuki MT, West N, Duperron S, Desdevises Y. Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS One 2019; 14:e0221475. [PMID: 31504055 PMCID: PMC6736230 DOI: 10.1371/journal.pone.0221475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Magdalena Ruiz-Rodríguez
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Marcelino T. Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM Observatoire Océanologique, Banyuls/Mer, France
| | - Nyree West
- Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls/Mer, France
| | - Sébastien Duperron
- CNRS, Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, UMR7245 MCAM, Muséum National d’Histoire Naturelle, Paris, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| |
Collapse
|
5
|
Casal G, Soares EC, Rocha S, Silva TJ, Santos EL, Nascimento R, Oliveira E, Azevedo C. Description of a new myxozoan Kudoa eugerres n. sp. and reclassification of two Sphaerospora sensu lato species. Parasitol Res 2019; 118:1719-1730. [DOI: 10.1007/s00436-019-06324-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
|