1
|
Rufino-Moya PJ, Zafra Leva R, Martínez-Moreno Á, Buffoni L, Valderas García E, Pérez Arévalo J, Molina-Hernández V, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno FJ. Advancement in Diagnosis, Treatment, and Vaccines against Fasciola hepatica: A Comprehensive Review. Pathogens 2024; 13:669. [PMID: 39204269 PMCID: PMC11357060 DOI: 10.3390/pathogens13080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In this review article, we aim to provide an overview of fasciolosis in ruminants. Diagnosis through new coprological methods (such as Flukefinder®, FLOTAC®, and Mini-FLOTAC®) remains the most suitable approach for farms. Regarding treatment, there is a scarcity of available drugs, and resistance to them has prompted new approaches (including drug combinations, enhanced metabolism, or the use of natural compounds) to address this issue. Additionally, several researchers have developed vaccines to control the disease, but their efficacy varies, and none are currently sufficient for commercial use. Further studies are needed to better understand all aspects discussed in this manuscript, with the goal of improving diagnosis, treatment, and disease control. It is important to note that this manuscript does not delve into in-depth knowledge of the discussed aspects; rather, it provides an overview of the different methodologies related to these three aspects of parasitic disease.
Collapse
Affiliation(s)
- Pablo José Rufino-Moya
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
| | - Rafael Zafra Leva
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Elora Valderas García
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24004 León, Spain
| | - José Pérez Arévalo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Verónica Molina-Hernández
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - María T. Ruiz-Campillo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Guillem Herrera-Torres
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Francisco J. Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| |
Collapse
|
2
|
Esteban JG, Muñoz-Antolí C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:541-582. [PMID: 39008275 DOI: 10.1007/978-3-031-60121-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In the present chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Lawrence R Ash
- Infectious & Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
The fatty acid-binding protein (FABP) decreases the clinical signs and modulates immune responses in a mouse model of experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2021; 96:107756. [PMID: 33993100 DOI: 10.1016/j.intimp.2021.107756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND An increasing body of studies has shown that Fasciola hepatica can affect immune responses. This study explored whether the fatty acid-binding protein (FABP) of F. hepatica can modulate the immune system in a mouse model of experimental autoimmune encephalomyelitis (EAE). METHODS EAE-induced C57BL/6 mice were treated with vehicle, F. hepatica total extract (TE) or FABP. The clinical signs, body weights, and the expression of IFN-γ, T-bet, IL-4, GATA3, IL-17, RORγ, TGF-β, FOXP3, IL-10, TNF-α genes and proteins were determined in the isolated CD4+ splenocytes. Besides, the percentage of Treg cells and degree of demyelination were evaluated. RESULTS We found that TE and FABP treatments decreased the clinical scores, lymphocyte infiltration rate, and demyelinated plaques in EAE mice. The expressions of IL-4 and GATA3 were increased, whereas IL-17 and TNF-α were down-regulated. FABP did not affect the expression of IFN-γ, RORγ, IL-10, and TGF-β genes or proteins but reduced the expression of T-bet. TE administration did not affect the expression of IL-10 and the Tbet genes, and increased the expression levels of IFN-γ and FOXP3 in CD4+ lymphocytes. Both FABP and TE treatment did not affect the Treg cell percentage. CONCLUSION This study indicates that F. hepatica FABP and TE can suppress the inflammatory responses in EAE-induced mice and shift the immune system toward Th2 responses. However, FABP exerts stronger anti-inflammatory effects and seems to be more effective than TE for EAE treatment.
Collapse
|
4
|
Mirzadeh A, Jafarihaghighi F, Kazemirad E, Sabzevar SS, Tanipour MH, Ardjmand M. Recent Developments in Recombinant Proteins for Diagnosis of Human Fascioliasis. Acta Parasitol 2021; 66:13-25. [PMID: 32974849 DOI: 10.1007/s11686-020-00280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Fascioliasis is an important neglected tropical disease that causes severe injury to the bile ducts and liver. Therefore, a rapid and accurate method for detection of Fasciola hepatica infection plays a vital role in early treatment. Currently, the diagnosis of fascioliasis is mainly conducted via serological tests using the excretory/secretory (E/S) products, which might cross-react with antigens from other helminth parasitic diseases. Hence, the development of serodiagnosis test using recombinant antigens may contribute to differentiate fascioliasis from other helminth infections. In the past 20 years, many attempts have been made to exert different F. hepatica recombinant antigens to obtain a well-established standard assay with high accuracy. In this review, we address recent studies that refer to the development of serodiagnosis tests for diagnosis of human fascioliasis based on the candidate recombinant antigens produced by different approaches. Meanwhile, in the present review, some main factors have been highlighted to improve the accuracy of diagnostic tests such as the effect of refolding methods to recover antigens' tertiary structure as well as applying a mixture of recombinant antigens with the highest sensitivity and specificity to improve the accuracy of diagnostic tests.
Collapse
Affiliation(s)
- Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, 1584743311, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokouh Shahrokhi Sabzevar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Tanipour
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, 1584743311, Tehran, Iran
| |
Collapse
|
5
|
Design and expression of polytopic construct of cathepsin-L1, SAP-2 and FhTP16.5 proteins of Fasciola hepatica. J Helminthol 2020; 94:e134. [PMID: 32127056 DOI: 10.1017/s0022149x20000140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme-linked immunosorbent assay (ELISA) technique can play an important role in the early detection of fascioliasis. However, they have some diagnostic limitations, including cross-reaction with other helminths. It seems that the combination of recombinant parasite proteins as antigen can reduce these problems. Hence, the present study was aimed to design and confirm the antigenic recombinant multi-epitope (rMEP) construct of three protein epitopes (linear and conformational B-cell epitopes) of the parasite using immunoinformatic tools. For this purpose, the tertiary structures of Fasciola hepatica cathepsin-L1, saposin-like protein 2 and 16.5-kDa tegument-associated protein were predicted using the I-TASSER server. Validation of the modelled structures was performed by Ramachandran plots. The antigenic epitopes of the proteins were achieved by analysing the features of the IEDB server. The synthesized gene was cloned into the pET-22b (+) expression vector and transformed into the Escherichia coli BL21. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to verify and analyse the expression of the rMEP protein. Western blotting was utilized to confirm rMEP protein immunogenicity in two forms, one using an anti-His tag antibody and the other with human pooled sera samples (fascioliasis, non-fascioliasis and negative control sera). Our results demonstrated that the rMEP designed for the three proteins of F. hepatica was highly antigenic, and immune-detection techniques confirmed the antigen specificity. In conclusion, the presented antigenic multi-epitope may be very helpful to develop serodiagnostic kits such as indirect ELISA to evaluate the proper diagnosis of fascioliasis in humans and ruminants.
Collapse
|
6
|
Esteban JG, Muñoz-Antoli C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:437-471. [PMID: 31297770 DOI: 10.1007/978-3-030-18616-6_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver, and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods, and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In this chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain.
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Lawrence R Ash
- Infectious and Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Khanmohammadi M, Falak R, Meamar AR, Razmjou E, Mokhtarian K, Arshadi M, Shayanfar N, Akhlaghi L. Application of Dirofilaria immitis
immunoreactive proteins in serodiagnosis. Parasite Immunol 2018; 41:e12598. [DOI: 10.1111/pim.12598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Majid Khanmohammadi
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Reza Falak
- Immunology Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Immunology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Ahmad Reza Meamar
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Kobra Mokhtarian
- Medical Plant Research Center; Basic Health Sciences Institute; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Mehdi Arshadi
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Nasrin Shayanfar
- Department of pathology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Lame Akhlaghi
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
8
|
Roozbehani M, Falak R, Mohammadi M, Hemphill A, Razmjou E, Meamar AR, Masoori L, Khoshmirsafa M, Moradi M, Gharavi MJ. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine 2018; 36:6124-6132. [DOI: 10.1016/j.vaccine.2018.08.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
|
9
|
Cloning, expression, and spectral analysis of mouse betatrophin. Med J Islam Repub Iran 2017; 31:102. [PMID: 29951403 PMCID: PMC6014755 DOI: 10.14196/mjiri.31.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Betatrophin, a novel secretory protein from liver and fatty tissues, is believed to be involved in lipid and glucose metabolism. However, its precise physiological role remains unclear. Here, we report the cloning, expression, and purification steps of mouse betatrophin in a prokaryotic system, followed by its structural analysis. Methods: Specific cloning primers were used to amplify the coding sequence of mouse liver betatrophin. The product was cloned into pET28 and expressed in E.coli BL21 (DE3) cells. The suitability of the refolding procedure was assessed by determining secondary structures of the initial and refolded proteins using circular dichroism spectroscopy. Results: The polymerase chain reaction resulted in a 549 bp nucleotide sequence, encoding a 183 amino acid polypeptide, with an apparent molecular weight of 21 kDa, which was expressed in an inclusion body. Following an optimization and refolding procedure, the recombinant protein was purified by anion exchange and metal affinity chromatography. CD spectra revealed that the refolded protein has suitable configuration. Conclusion: We believe that the produced betatrophin is suitable for further biochemical studies on glucose and lipid metabolism.
Collapse
|
10
|
Falahati M, Ghanbari S, Ebrahimi M, Ghazanfari M, Bazrafshan F, Farahyar S, Falak R. Fractionation and identification of the allergic proteins in Aspergillus species. Curr Med Mycol 2016; 2:37-45. [PMID: 28959794 PMCID: PMC5611695 DOI: 10.18869/acadpub.cmm.2.4.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose: Allergy is an undesired immune response to non-pathogenic agents. However, some opportunistic microorganisms such as fungi can also cause allergy. Among those fungi, hyphae form of Aspergillus strains including A. fumigatus, A. flavus, and A. niger could be mentioned. In this study, we aimed to separate allergic proteins from Aspergillus strains and determine their identity. Materials and Methods: Standard species of Aspergillus strains were cultivated in optimized conditions and the mycelium was separated by centrifugation. The fungal cells were lysed through physical methods such as freeze-thawing and grinding to prepare a suitable protein extract. The protein concentration was measured by Bradford method and the electrophoretic pattern of the extract was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were fractionated by ammonium sulfate precipitation and anion exchange chromatography using fast protein liquid chromatography (FPLC) system. The IgE immunoreactivity of the sensitized patients and controls was studied using the fractionated proteins by enzyme-linked immunosorbent assay (ELISA). Following SDS-PAGE, proteins were electrotransferred onto polyvinylidene difluoride (PVDF) membranes and the strips were blotted with allergic patients' and controls' sera. The immunoreactive bands were excised from colloidal coomassie-stained SDS-PAGE gels and studied by mass spectroscopy methods. Results: Among the studied species, A. fumigatus showed stronger IgE reactivity and more IgE reactive protein bands than others did. The proteins with higher molecular weights showed stronger immunoreactivity in Western blotting. Receiver operating characteristic curve analysis demonstrated a correlation between the results of the applied ELISA methods. One of the most prominent IgE-reactive proteins was confirmed to be 45 kDa mycelia catalase. Conclusion: Our findings confirmed that high molecular weight proteins might play a major role in allergy and IgE reactivity to Aspergillus species. Moreover, the results showed that precipitation and chromatographic methods are applicable for fractionation of fungal proteins such as mycelial catalase.
Collapse
Affiliation(s)
- M Falahati
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Ghanbari
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Ebrahimi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Ghazanfari
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - F Bazrafshan
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Farahyar
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - R Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|