1
|
Correya MS, Pananghat V, Karayi SN. Morphological and Molecular Characterization of Myxobolus planilizae n. sp. (Cnidaria; Myxosporea; Myxobolidae) Infecting the Largescale Mullet Planiliza macrolepis (Smith, 1846) Collected From Cochin Backwaters, India. Acta Parasitol 2023; 68:42-50. [PMID: 36348180 DOI: 10.1007/s11686-022-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Myxobolus planilizae n. sp. is described from the intestinal muscles of the largescale mullet Planiliza macrolepis from Cochin backwaters, Kerala, India. METHODS Host fishes inhabiting Cochin backwaters were collected using Chinese nets/gill nets. The morphometry and morphological studies were carried out using Nomarski differential interference contrast (DIC) optics, followed by molecular and phylogenetic analyses of the small subunit ribosomal DNA gene (SSU rDNA). RESULTS Plasmodia small, pale white, and infect the muscles of the intestine; measured 0.13-0.22 (0.17) × 0.09-0.14 (0.13) mm. Mature myxospores pyriform in valvular view, and biconvex in sutural and apical views with a short anterior extension, and measured 7.45-8.75 (8.40) × 6.04-6.86 (6.25) µm. Shell valves with sutural ornamentations. Polar capsules two, equal, pyriform, measured 3.96-4.54 (4.45) × 2.22-2.94 (2.52) µm. Polar filament arranged in five coils, measured 24.41-34.44 (28.52) µm when extruded. In morphological and morphometric analysis, the present species exhibit remarkable variations from other species of the genus Myxobolus. In molecular analysis, the present species revealed the highest identity of 91.85% and divergence of 9.95% with related species, underlining its molecular uniqueness. In phylogenetic analysis, species of Myxobolus infecting mullets appeared as a separate clade and the present species was positioned distinctly with a high bootstrap value. CONCLUSIONS Based on morphology, morphometry, and molecular and phylogenetic analyses, along with tissue/host specificities and geographic location, the present parasite is treated as new and is reported here as M. planilizae n. sp.
Collapse
Affiliation(s)
- Mary Soniya Correya
- Fish Health Section, Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, 682018, India.
| | - Vijayagopal Pananghat
- Fish Health Section, Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, 682018, India
| | - Sanil Nandiath Karayi
- Fish Health Section, Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, 682018, India
| |
Collapse
|
2
|
Gupta A, Haddas-Sasson M, Gayer K, Huchon D. Myxozoan infection in thinlip mullet Chelon ramada (Mugiliformes: Mugilidae) in the Sea of Galilee. Sci Rep 2022; 12:10049. [PMID: 35710685 PMCID: PMC9203526 DOI: 10.1038/s41598-022-13215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Mullets (Mugilidae) are economically important fish in Israel. Two species of mugilids (i.e., the thinlip mullet Chelon ramada and the flathead grey mullet Mugil cephalus) have been stocked in the Sea of Galilee (Lake Kinneret) in order to increase fishermen's income and lake water quality. These catadromous species do not reproduce in the lake, consequently, fingerlings have been introduced every year since 1958. Following a survey of myxozoan infections in the Sea of Galilee, we described Myxobolus pupkoi n. sp. infecting the gill arches, and reported Myxobolus exiguus from visceral peritoneum and gall bladder of C. ramada. The prevalence of infection of both Myxobolus pupkoi n. sp. and M. exiguus were 11.5% (2/23). Our study indicates that the parasites infecting C. ramada belong to a lineage of myxozoans infecting mugilids. This result suggests that the infection took place in the Mediterranean Sea, where the fingerlings were caught, before their introduction into the Sea of Galilee. Since 2018 only farm-raised fingerlings have been introduced. We thus recommend to closely monitor the presence of these parasites in the future to determine if the presence of parasites disappear with the introduction of farm-raised fingerlings.
Collapse
Affiliation(s)
- Aditya Gupta
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Steinhardt Natural History Museum, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Michal Haddas-Sasson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Kfir Gayer
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Steinhardt Natural History Museum, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Steinhardt Natural History Museum, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Sayyaf Dezfuli B, Pironi F, Maynard B, Simoni E, Bosi G. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs. FISH & SHELLFISH IMMUNOLOGY 2022; 121:516-534. [PMID: 35123696 DOI: 10.1016/j.fsi.2021.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Rodlet cells (RCs) are the enigmatic and distinctive pear-shaped cells had found in many tissues of marine and freshwater teleosts. They have a distinctive fibrous capsule or the cell cortex that envelopes conspicuous inclusions called rodlets, basally situated nucleus, and poorly developed mitochondria. The contraction of the cell cortex results in the expulsion of the cell contents through an apical opening. One hundred and thirty years since rodlet cells were first reported, many questions remain about their origin and a function. This review will present new evidence regarding the relationship between RCs and metazoan parasites, and a protozoan infecting organs of different fish species, and update the state of knowledge about the origin, structure and the function of these intriguing fish cells.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Barbara Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Edi Simoni
- Department of Neurosciences, University of Padua, St. Giuseppe Orus, 2/B, 35128, Padua, Italy.
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, University of Milan, St. of University 6, 26900, Lodi, Italy.
| |
Collapse
|
4
|
Correya MS, Vijayagopal P, Sanil NK. Morphological and molecular description of a new species of Myxobolus (Myxosporea: Myxobolidae) infecting Planiliza macrolepis (Smith, 1846) from India. J Parasit Dis 2021; 45:887-896. [PMID: 34789969 DOI: 10.1007/s12639-021-01376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 11/28/2022] Open
Abstract
The present paper describes a novel species of Myxobolus parasitizing the gill filaments of the largescale mullet, Planiliza macrolepis from Cochin backwaters, Kerala, India. The parasite develops in the gill filaments; plasmodia elongated, milky white, measured 1.37-2.18 (1.78 ± 0.35) mm × 0.07-0.12 (0.10 ± 0.02) mm in size. Mature myxospores ovoid in valvular view, biconvex in sutural view with smooth shell valves and measured 6.24-7.02 (6.63 ± 0.23) × 5.01-6.18 (5.68 ± 0.25) μm in size. Polar capsules equal, oval with pointed anterior ends, 3.07-3.58 (3.33 ± 0.12) × 1.68-2.42 (2.09 ± 0.18) μm in size. Polar filaments with 4 coils, measured 29.61 ± 4.75 μm in length when extruded. Sporoplasm binucleate with a rudimentary nucleus and a vacuole. A comparison with related Myxobolus species revealed significant morphological and morphometric differences. In BLASTN and genetic distance analysis, the present parasite showed high divergence with other myxosporean sequences, indicating its molecular uniqueness. In Maximum Likelihood and Bayesian Inference analysis, the present species stands out with M. ramadus as sister branch within the Myxobolus clade. In infected gill filaments, the plasmodia caused swelling/deformation, compression of lamellae and reduction in respiratory surface area. Three of 222 P. macrolepis screened were infected, indicating a prevalence of 1.3%. Considering the morphological, morphometric, molecular and phylogenetic differences with the previously described species of myxosporeans, along with the dissimilarities in host and geographical locations, the present parasite is treated as a new species and the name Myxobolus cochinensis n. sp. is proposed.
Collapse
Affiliation(s)
- Mary Soniya Correya
- Fish Health Section, Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, Kerala 682018 India
| | - P Vijayagopal
- Fish Health Section, Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, Kerala 682018 India
| | - N K Sanil
- Fish Health Section, Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, Kerala 682018 India
| |
Collapse
|
5
|
Polinas M, Padrós F, Merella P, Prearo M, Sanna MA, Marino F, Burrai GP, Antuofermo E. Stages of Granulomatous Response Against Histozoic Metazoan Parasites in Mullets (Osteichthyes: Mugilidae). Animals (Basel) 2021; 11:ani11061501. [PMID: 34064270 PMCID: PMC8224377 DOI: 10.3390/ani11061501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Parasitic diseases represent a common issue in fish and, when histozoic forms are present, this elicits a chronic inflammatory reaction leading to granuloma formation. Despite the large knowledge of granuloma formation due to parasites in visceral organs, little is known about the development and the evolutive stages of granulomas in naturally infected fish. Mullets (Osteichthyes: Mugilidae) are a widespread euryhaline fish species that harbor different parasites, thus representing a suitable model for the study of parasite-induced granulomas. Combining histopathology and immunohistochemical tools, we identified three developmental granuloma stages (pre-granuloma, intermediate, and late stage), that ranged from an intact parasite with mild signs of tissue reaction to the formation of a structured granuloma. The identified histological patterns could be reliable tools in the staging of the granulomatous response associated with histozoic parasites and are an attempt to broaden the knowledge of the inflammatory response in different host–parasite systems. Abstract Histozoic parasite–fish host interaction is a dynamic process that leads to the formation of a granuloma, a specific chronic inflammatory response with discernible histological features. Mullets (Osteichthyes: Mugilidae) represent a suitable model concerning the development of such lesions in the host–parasite interface. The present work aimed to identify granuloma developmental stages from the early to the late phase of the infection and to characterize the immune cells and non-inflammatory components of the granuloma in different stages. For this purpose, 239 mullets were collected from 4 Sardinian lagoons, and several organs were examined by combining histopathological, bacteriological, and immunohistochemical methods. Granulomas associated with trematode metacercariae and myxozoan parasites were classified into three developmental stages: (1) pre-granuloma stage, characterized by intact encysted parasite and with no or mild tissue reaction; (2) intermediate stage, with partially degenerated parasites, necrosis, and a moderate number of epithelioid cells (ECs); and (3) late stage, with a necrotic core and no detectable parasite with a high number of ECs and fibroblasts. The three-tier staging and the proposed morphological diagnosis make it conceivable that histopathology could be an essential tool to evaluate the granulomas associated with histozoic parasitic infection in fish.
Collapse
Affiliation(s)
- Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Correspondence: ; Tel.: +39-(079)-229566
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Barcelona, Catalonia, Spain;
| | - Paolo Merella
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Marino Prearo
- Fish Disease Laboratory, State Veterinary Institute of Piedmont, Liguria and Aosta Valley, 10154 Torino, Italy;
| | - Marina Antonella Sanna
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Dezfuli BS, Castaldelli G, Tomaini R, Manera M, DePasquale JA, Bosi G. Challenge for macrophages and mast cells of Chelon ramada to counter an intestinal microparasite, Myxobolus mugchelo (Myxozoa). DISEASES OF AQUATIC ORGANISMS 2020; 138:171-183. [PMID: 32213665 DOI: 10.3354/dao03459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thinlip mullet Chelon ramada is the most abundant mullet species found in the Comacchio lagoons (northern Adriatic Sea, Italy). Histological and ultrastructural sections of the intestine of C. ramada showed that over 83% of 48 mullets were infected with the intestinal parasite Myxobolus mugchelo (Myxozoa). In histological sections, plasmodia of M. mugchelo containing mature spores were situated closer to mucosal folds and were surrounded by numerous mast cells (MCs). Mature spores, generally oval in shape, were observed in the paracellular space among the enterocytes or within them. Near the infected epithelial cells, several MCs, rodlet cells and few neutrophils occurred. In intestinal epithelium, large cells resembling macrophages, some with spores of M. mugchelo inside, were observed. These macrophage-like cells were foamy and possessed elongate striated granules. The number of MCs and macrophages in the intestinal epithelium was significantly higher in parasitized fish. In some parasitized intestines, portions of epithelium were displaced by spores, or the spores were observed inside the damaged enterocytes. Immunohistochemical analysis of C. ramada infected or uninfected intestinal tissue revealed the presence of histamine, serotonin (5-HT), leu-enkephalin and inducible-nitric oxide synthase in epithelial macrophages. Several epithelial cells positive to proliferating cell-nuclear antigen were also observed in the proximity of the macrophages. The current study is the first to record the occurrence of intraepithelial macrophages which engulf myxozoan spores. A hypothesis on migration of spores from pancreas via intestinal wall to gut lumen is presented.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St Borsari 46, 44121 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Capodifoglio KRH, Adriano EA, Naldoni J, Meira CM, da Silva MRM, Maia AAM. Novel myxosporean species parasitizing an economically important fish from the Amazon basin. Parasitol Res 2020; 119:1209-1220. [PMID: 32189056 DOI: 10.1007/s00436-020-06641-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/25/2020] [Indexed: 11/28/2022]
Abstract
This paper provides morphological and phylogenetic analyses of two new myxobolid species found infecting Piaractus brachypomus from the Amazon basin. The fish were caught in the Tapajós River, in the municipality of Santarém, in the state of Pará, Brazil. The plasmodial development of Henneguya brachypomus n. sp. occurred in the gill lamellae while Myxobolus pirapitingae n. sp. developed in the pyloric cecum. Morphological analyses did not identify inflammatory infiltrate for either species, but H. brachypomus n. sp. induced stretching of the epithelium, compression of the adjacent tissues, and displacement and deformation of the neighboring lamellae. The mature myxospores of H. brachypomus n. sp. were ellipsoid, with a length of 11.7-13.8 μm, a width of 4.0-4.6 μm, and a thickness of 3.5-4.3 μm. The polar capsules were elongated, with a length of 5.6-7.3 μm and a width of 1.3-2.0 μm, and each contained a polar filament with 8-9 coils. The caudal process was 40.5-48.1 μm long and the total length of the myxospore was 52.4-61.6 μm. Myxobolus pirapitingae n. sp. exhibited rounded mature myxospores measuring 10.0-11.1 μm in length, 7.0-7.6 μm in width, and 5.4-6.3 μm in thickness. The polar capsules were of equal size and occupied less than half the myxospore, measuring 3.5-4.0 μm in length and 2.0-2.6 μm in width, with each containing a polar filament with 6-7 coils. Phylogenetic analysis based on partial small subunit ribosomal DNA (ssrDNA) sequences showed that H. brachypomus n. sp. clustered as a sister species of Henneguya piaractus, while M. pirapitingae n. sp. was grouped in a sub-clade together with Myxobolus matosi and Myxobolus colossomatis.
Collapse
Affiliation(s)
- Kassia R H Capodifoglio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Edson A Adriano
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil. .,Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Juliana Naldoni
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Caroline M Meira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Marcia R M da Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Antonio A M Maia
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| |
Collapse
|
8
|
Rocha S, Casal G, Alves Â, Antunes C, Rodrigues P, Azevedo C. Myxozoan biodiversity in mullets (Teleostei, Mugilidae) unravels hyperdiversification of Myxobolus (Cnidaria, Myxosporea). Parasitol Res 2019; 118:3279-3305. [PMID: 31673834 DOI: 10.1007/s00436-019-06476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/24/2019] [Indexed: 11/30/2022]
Abstract
Mullets are ecologic and commercially important fish species. Their ubiquitous nature allows them to play critical roles in freshwater and marine ecosystems but makes them more vulnerable to diseases and parasitic infection. In this study, a myxozoan survey was performed on three species of mullet captured from a northern Portuguese river. The results disclose a high biodiversity, specifically due to the hyperdiversification of Myxobolus. Thirteen new species of this genus are described based on microscopic and molecular procedures: 7 from the thinlip grey mullet Chelon ramada, 2 from the thicklip grey mullet Chelon labrosus, and 4 from the flathead grey mullet Mugil cephalus. Myxobolus exiguus and Ellipsomyxa mugilis are further registered from their type host C. ramada, as well as six more myxospore morphotypes that possibly represent distinct Myxobolus species. Overall, the results obtained clearly show that the number of host-, site- and tissue-specific Myxobolus spp. is much higher than what would be expected in accordance to available literature. This higher biodiversity is therefore discussed as either being the result of the usage of poor discriminative criteria in previous studies, or as being a direct consequence of the biological and ecological traits of the parasite and of its vertebrate and invertebrate host communities. Bayesian inference, maximum likelihood and maximum parsimony analyses position the new species within a clade comprising all other Myxobolus spp. that infect mugiliform hosts, thus suggesting that this parasitic group has a monophyletic origin. Clustering of species in relation to the host genus is also revealed and strengthens the contention that the evolutionary history of mugiliform-infecting Myxobolus reflects that of its vertebrate hosts. In this view, the hyperdiversification of Myxobolus in mullet hosts is hypothesized to correlate with the processes of speciation that led to the ecological plasticity of mullets.
Collapse
Affiliation(s)
- Sónia Rocha
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Graça Casal
- University Institute of Health Sciences & Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, Rua Central da Gandra no. 1317, 4585-116, Gandra, Portugal
| | - Ângela Alves
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carlos Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Aquamuseu do Rio Minho, Parque do Castelinho, 4920-290, Vila Nova de Cerveira, Portugal
| | - Pedro Rodrigues
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen no. 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen no. 208, 4200-135, Porto, Portugal
| | - Carlos Azevedo
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
9
|
Sayyaf Dezfuli B, Giari L, Lorenzoni M, Carosi A, Manera M, Bosi G. Pike intestinal reaction to Acanthocephalus lucii (Acanthocephala): immunohistochemical and ultrastructural surveys. Parasit Vectors 2018; 11:424. [PMID: 30012189 PMCID: PMC6048848 DOI: 10.1186/s13071-018-3002-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The Northern pike, Esox lucius, is a large, long-lived, top-predator fish species and occupies a broad range of aquatic environments. This species is on its way to becoming an important model organism and has the potential to contribute new knowledge and a better understanding of ecology and evolutionary biology. Very few studies have been done on the intestinal pathology of pike infected with helminths. The present study details the first Italian record of adult Acanthocephalus lucii reported in the intestine of E. lucius. Results A total of 22 pike from Lake Piediluco (Central Italy) were examined, of which 16 (72.7%) were infected with A. lucii. The most affected areas of gastrointestinal tract were the medium and distal intestine. The intensity of infection ranged from 1 to 18 parasites per host. Acanthocephalus lucii penetrated mucosal and submucosal layers which had a high number of mast cells (MCs) with an intense degranulation. The cellular elements involved in the immune response within the intestine of pike were assessed by ultrastructural techniques and immunohistochemistry using antibodies against met-enkephalin, immunoglobulin E (IgE)-like receptor (FCεRIγ), histamine, interleukin-6, interleukin-1β, substance P, lysozyme, serotonin, inducible-nitric oxide synthase (i-NOS), tumor necrosis factor-α (TNF-α) and the antimicrobial peptide piscidin 3 (P3). In intestines of the pike, several MCs were immunopositive to 9 out of the 11 aforementioned antibodies and infected fish had a higher number of positive MCs when compared to uninfected fish. Conclusions Pike intestinal tissue response to A. lucii was documented. Numerous MCs were seen throughout the mucosa and submucosal layers. In infected and uninfected intestines of pike, MCs were the dominant immune cell type encountered; they are the most common granulocyte type involved in several fish-helminth systems. Immunopositivity of MCs to 9 out of 11 antibodies is of great interest and these cells could play an important key role in the host response to an enteric helminth. This is the first report of A. lucii in an Italian population of E. lucius and the first account on positivity of MCs to piscidin 3 and histamine in a non-perciform fish.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100, Teramo, Italy
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Sayyaf Dezfuli B, Castaldelli G, Giari L. Histopathological and ultrastructural assessment of two mugilid species infected with myxozoans and helminths. JOURNAL OF FISH DISEASES 2018; 41:299-307. [PMID: 29064086 DOI: 10.1111/jfd.12713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The histopathology and ultrastructure of the intestine of mullets, Liza ramada and Liza saliens, from Comacchio lagoons (northern Italy) naturally infected with myxozoans and helminths were investigated and described. Sixty-two (80.5%) of 77 mullets harboured one or more of the following parasites species: Myxobolus mugchelo (Myxozoa), Neoechinorhynchus agilis (Acanthocephala), Haplosplanchnus pachysomus and Dicrogaster contractus (Digenea). Co-occurrence of helminths with myxozoans was common. The main damage caused by digeneans was destruction of the mucosal epithelium of the villi, necrosis and degeneration of intestinal epithelial cells. More severe intestinal damage was caused by acanthocephalans which reach the submucosa layer with their proboscis. At the site of helminths infection, several mast cells (MCs), rodlet cells (RCs), mucous cells and few neutrophils and macrophages were observed in the epithelium. RCs and mucous cells exhibited discharge activity in close vicinity to the worm's tegument. M. mugchelo conspicuous plasmodia were encysted mainly in muscle and submucosa layers of the intestine. Indeed, spores of M. mugchelo were documented within the epithelial cells of host intestine and in proximity to MCs. Degranulation of the MCs near the myxozoans was very frequent.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Castaldelli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - L Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|