1
|
Plaksina MP, Gibson DI, Dmitrieva EV. Life-history studies on infrapopulations of Mazocraes alosae (Monogenea) parasitising Alosa immaculata (Actinopterygii) in the northern Black and Azov Seas. Folia Parasitol (Praha) 2021; 68. [PMID: 33938814 DOI: 10.14411/fp.2021.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
The life-history of Mazocraes alosae Hermann, 1782 on one of its hosts, the Pontic shad Alosa immaculata Bennett, is described for the first time. This anadromous fish, which occurs off the coast of the Crimea and migrates from the Black Sea to the Sea of Azov and into the River Don for spawning, was studied throughout its migration and during all seasons. It is demonstrated that the period of reproduction of this monogenean is significantly longer than that reported for the population in the Caspian Sea, lasting from April to November with a peak in April-May, and continues both in the sea and the river. Experiments showed that water salinity does not limit the development of the eggs or the hatching of the oncomiracidia. Our data reveal that the abundance of M. alosae is not determined by the size or sex of mature fish and that shad of less than two years old can also be infected with this monogenean, although less frequently than older fish. The direction of the migration of A. immaculata, either from the Black Sea to the Sea of Azov and into the rivers or in the opposite direction, does not influence the number of monogeneans present on the host. The main factor affecting the dynamics of the abundance of this monogenean is season, and, as has been indicated previously in the Caspian Sea basin, there is a synchronisation between the parasite's life-history and both the host's spawning behaviour and the duration of its migration.
Collapse
Affiliation(s)
| | - David I Gibson
- Department of Life Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
2
|
Liu K, Yin D, Shu Y, Dai P, Yang Y, Wu H. Transcriptome and metabolome analyses of Coilia nasus in response to Anisakidae parasite infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:235-242. [PMID: 30611778 DOI: 10.1016/j.fsi.2018.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Parasites from the family Anisakidae are capable of infecting a range of marine fish species worldwide. Coilia nasus, which usually feeds and overwinters in coastal waters and spawns in freshwater, is highly susceptible to infection by Anisakidae. In this study, we used scanning electron microscopes to show that C. nasus infected by Anisakidae exhibited damage and fibrosis of the liver tissue. To better understand host immune reaction and metabolic changes to Anisakidae infection, we used a combination of transcriptomic and metabolomic method to characterize the key genes and metabolites, and the signaling pathway regulation of C. nasus infected by Anisakidae. We generated 62,604 unigenes from liver tissue and identified 391 compounds from serum. Of these, Anisakidae infection resulted in significant up-regulation of 545 genes and 28 metabolites, and significant down-regulation of 416 genes and 37 metabolites. Seventy-four of the 961 differentially expressed genes were linked to immune response, and 1, 2-Diacylglycerol, an important immune-related metabolite, was significantly up-regulated after infection. Our results show activation of antigen processing and presentation, initiation of the T cell receptor signaling pathway, disruption of the TCA cycle, and changes to the amino acid and Glycerolipid metabolisms, which indicate perturbations to the host immune system and metabolism following infection. This is the first study describing the immune responses and metabolic changes in C. nasus to Anisakidae infection, and thus improves our understanding of the interaction mechanisms between C. nasus and Anisakidae. Our findings will be useful for future research on the population ecology of C. nasus.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Denghua Yin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yilin Shu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Pei Dai
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Hailong Wu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|