1
|
Amoak S, Soldera J. Blastocystis hominis as a cause of chronic diarrhea in low-resource settings: A systematic review. World J Meta-Anal 2024; 12:95631. [DOI: 10.13105/wjma.v12.i3.95631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Blastocystis hominis (B. hominis), an anaerobic unicellular protist parasite, is known for its diverse clinical manifestations upon infecting the human gastrointestinal tract. Although globally distributed, it is particularly prevalent in developing nations. Examining the symptoms and treatment outcomes of B. hominis infection in low-resource settings holds immense significance, providing healthcare practitioners with valuable insights to enhance patient care.
AIM To synthesize existing evidence on the symptomatology and treatment outcomes of B. hominis infection in low-resource settings.
METHODS Following the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, a systematic review was conducted. The search spanned electronic databases including PubMed, Scopus, and Google Scholar. After a comprehensive screening process, a thorough examination of the papers, adhering to inclusion and exclusion criteria, and data extraction from eligible studies was conducted. The findings underwent summarization through simple descriptive analysis.
RESULTS The search yielded 1200 papers, with 17 meeting inclusion criteria. Chronic diarrhea due to B. hominis infection was reported in only two studies, while abdominal pain, diarrhea, flatulence, constipation, and nausea/vomiting emerged as the most commonly documented symptoms. Recovery rates after one week of treatment ranged from 71.8% to 100%, and after two weeks, from 60% to 100%.
CONCLUSION In low-resource settings, chronic diarrhea resulting from B. hominis infection is infrequent. Common symptoms include abdominal pain, diarrhea, flatulence, constipation, and nausea/vomiting. Post-treatment, clinical outcomes are notably favorable, supporting the recommendation for treatment. Metronidazole is advocated as the first-line agent, with consideration for switching to a second-line option in cases of treatment failure or poor response.
Collapse
Affiliation(s)
| | - Jonathan Soldera
- Acute Medicine and Gastroenterology, University of South Wales, Cardiff CF37 1DL, United Kingdom
| |
Collapse
|
2
|
Alexeree SMI, Abou-Seri HM, El-Din HES, Youssef D, Ramadan MA. Green synthesis of silver and iron oxide nanoparticles mediated photothermal effects on Blastocystis hominis. Lasers Med Sci 2024; 39:43. [PMID: 38246979 PMCID: PMC10800310 DOI: 10.1007/s10103-024-03984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
The evolution of parasite resistance to antiparasitic agents has become a serious health issue indicating a critical and pressing need to develop new therapeutics that can conquer drug resistance. Nanoparticles are novel, promising emerging drug carriers that have demonstrated efficiency in treating many parasitic diseases. Lately, attention has been drawn to a broad-spectrum nanoparticle capable of converting absorbed light into heat via the photothermal effect phenomenon. The present study is the first to assess the effect of silver nanoparticles (Ag NPs) and iron oxide nanoparticles (Fe3O4 NPs) as sole agents and with the combined action of the light-emitting diode (LED) on Blastocystis hominins (B. hominis) in vitro. Initially, the aqueous synthesized nanoparticles were characterized by UV-Vis spectroscopy, zeta potential, and transmission electron microscopy (TEM). The anti-blastocyst efficiency of these NPs was tested separately in dark conditions. As these NPs have a wide absorption spectrum in the visible regions, they were also excited by a continuous wave LED of wavelength band (400-700 nm) to test the photothermal effect. The sensitivity of B. hominis cysts was evaluated using scanning laser confocal microscopy whereas the live and dead cells were accurately segmented based on superpixels and the k-mean clustering algorithm. Our findings showed that this excitation led to hyperthermia that induced a significant reduction in the number of cysts treated with photothermally active NPs. The results of this study elucidate the potential role of photothermally active NPs as an effective anti-blastocystis agent. By using this approach, new therapeutic antiparasitic agents can be developed.
Collapse
Affiliation(s)
- Shaimaa M I Alexeree
- Department of Laser Application in Metrology, Photochemistry, and Agricultural, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt.
| | - Hanan M Abou-Seri
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala E Shams El-Din
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Youssef
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry, and Agricultural, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Zhang P, Gong J, Jiang Y, Long Y, Lei W, Gao X, Guo D. Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics 2023; 15:1783. [PMID: 37513969 PMCID: PMC10384186 DOI: 10.3390/pharmaceutics15071783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Weiqiang Lei
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Younis MS, Abououf EAER, Ali AES, Abd elhady SM, Wassef RM. In vitro Effect of Silver Nanoparticles on Blastocystis hominis. Int J Nanomedicine 2020; 15:8167-8173. [PMID: 33116522 PMCID: PMC7588274 DOI: 10.2147/ijn.s272532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION This study aims to assess the efficacy of silver nanoparticles (Ag Nps) alone and combined with metronidazole (Ag Nps + MTZ) as potential alternative therapeutic agents for Blastocystis hominis. METHODS The parasites were challenged with Ag Nps, Ag Nps + MTZ and MTZ. To assess the efficacy of drugs, counting of viable parasites was done after 1, 2, and 3 hours of adding the drugs. RESULTS Blastocystis hominis count was reduced by 20.72%, 28.23%, and 18.92% after one hour of adding Ag Nps, Ag Nps + MTZ, and MTZ, respectively. Cysts count was further reduced by 51.49%, 61.61%, and 40.78% after 2 hours and by 71.69%, 79.67%, and 62.65% after 3 hours of adding the drugs in the same order, respectively. CONCLUSION There was a statistically significant difference (P<0.05) in the in vitro growth inhibition of the parasite over the different time intervals when using the tested drugs against the control drug.
Collapse
Affiliation(s)
- Mohamed Saad Younis
- Medical Parasitology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Ali El saeed Ali
- Medical Parasitology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Rita Maher Wassef
- Medical Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Hernández PC, Morales L, Chaparro-Olaya J, Sarmiento D, Jaramillo JF, Ordoñez GA, Cortés F, Sánchez LK. Intestinal parasitic infections and associated factors in children of three rural schools in Colombia. A cross-sectional study. PLoS One 2019; 14:e0218681. [PMID: 31291262 PMCID: PMC6619675 DOI: 10.1371/journal.pone.0218681] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
Rural children are one of the populations that are most vulnerable to gastrointestinal parasite infections. Such diseases decrease the quality of life and result in growth and cognitive delays in the long term. This cross-sectional study was conducted to determine the frequency of intestinal parasite infections among rural schoolchildren in the municipality of Apulo, Colombia. A total of 97 stool samples from children aged between 5 and 15 years were collected and examined via direct light microscopy. Microscopic examination was repeated with sediments obtained using a fecal parasite concentrator, and the Kato–Katz test was performed. Frequency of intestinal parasite infection was 100%. Endolimax nana (77.35%), Blastocystis sp. (71.1%), Giardia intestinalis (39.1%), Entamoeba coli (25.7%), and the Entamoeba histolytica/dispar/moshkovskii complex (9.2%) were the most prevalent protozoa. Trichuris trichiura was the most prevalent helminth (12.3%), followed by Enterobius vermicularis (6.15%) and Ascaris lumbricoides (5.1%). Among the analyzed associated factors, consumption of untreated water increased the risk of acquiring pathogenic intestinal parasites. Finally, because G. intestinalis was the most prevalent pathogenic protozoan, molecular analysis was conducted to establish genetic assemblages and subassemblages of Giardia through sequence-based genotyping of the glutamate dehydrogenase, triose phosphate isomerase, and beta-giardin genes. A total of 14 G. intestinalis-positive samples were genotyped, which revealed the presence of subassemblages AI (n = 1), AII (n = 7), BIII (n = 2), BIV (n = 2), and BIII/BIV (n = 1) as well as a mixed subassemblage AII + BIII (n = 1). Our results indicate that gastrointestinal parasite infections in the tested population were mainly caused by suboptimal water quality. Moreover, molecular typing of G. intestinalis suggested contamination of water by animal- and human-derived cysts.
Collapse
Affiliation(s)
- Paula C. Hernández
- Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
- * E-mail:
| | - Liliana Morales
- Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Jacqueline Chaparro-Olaya
- Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Diana Sarmiento
- Instituto de Salud y Ambiente, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Juan Felipe Jaramillo
- Instituto de Salud y Ambiente, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Gustavo A. Ordoñez
- Instituto de Salud y Ambiente, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Fabian Cortés
- Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Lizeth K. Sánchez
- Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
- Especialización en Pediatría, Facultad de Medicina, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
6
|
Mokhtar AB, Ahmed SA, Eltamany EE, Karanis P. Anti- Blastocystis Activity In Vitro of Egyptian Herbal Extracts (Family: Asteraceae) with Emphasis on Artemisia judaica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091555. [PMID: 31058875 PMCID: PMC6539629 DOI: 10.3390/ijerph16091555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
Achillea fragrantissima (Forssk.) Sch. Bip. (known as Qaysoom), Echinops spinosus L. (known as Shoak Elgamal) and Artemisia judaica L.(known Shih Baladi) are members of the Asteraceae family known for their traditional medical use in Egypt. The ethanol extracts of these plants were evaluated for their efficacy against a protozoan parasite (Blastocystis). Two different molecular subtypes of Blastocystis were used (ST1 and ST3). Significant growth inhibition of Blastocystis was observed when exposed to both A. judaica (99.3%) and A. fragrantissima (95.6%) with minimal inhibitory concentration (MIC90) at 2000 µg/mL. Under the effect of the extracts, changes in Blastocystis morphology were noted, with the complete destruction of Blastocystis forms after 72 h with the dose of 4000 µg/mL. Different subtypes displayed different responses to the herbal extracts tested. ST1 exhibited significantly different responses to the herbal extracts compared to ST3. A. judaica was selected as the herb of choice considering all of its variables and because of its effective action against Blastocystis. It was then exposed to further fractionation and observation of its effect on ST1 and ST3. Solvent portioned fractions (dichloromethane (DCM), ethyl acetate (EtOAc) and n-hexane) in A. judaica were found to be the potent active fractions against both of the Blastocystis subtypes used.
Collapse
Affiliation(s)
- Amira B Mokhtar
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 45122, Egypt.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat 77413, Saudi Arabia.
| | - Shahira A Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 45122, Egypt.
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 45122, Egypt.
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50937 Cologne, Germany.
| |
Collapse
|
7
|
Rajamanikam A, Hooi HS, Kudva M, Samudi C, Kumar S. Resistance towards metronidazole in Blastocystis sp.: A pathogenic consequence. PLoS One 2019; 14:e0212542. [PMID: 30794628 PMCID: PMC6386359 DOI: 10.1371/journal.pone.0212542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Blastocsytis sp. is a protozoan parasite that has been linked to common gastrointestinal illnesses. Metronidazole, the first line therapy, was reported to show frequent inefficacy. Previously, Blastocystis sp. isolated from different population showed varying metronidazole resistance. However, the effect of metronidazole treatment on pathogenic potentials of Blastocystis sp. isolated from different populations, which is known to have different gut environment, is unclear. This study investigates the in vitro effect of metronidazole on the pathogenic potentials of Blastocystis sp. isolated from urban and orang asli individuals. Blastocystis sp. ST 3 isolated from symptomatic and asymptomatic individuals were treated with a range of metronidazole concentration. The parasites’ growth characteristics, apoptotic rate, specific protease activity and the ability to proliferate cancer cells were analyzed upon treatment with 0.001 mg/l metronidazole. The study demonstrates that Blastocystis sp. isolates showed increase in the parasite numbers especially the amoebic forms (only in urban isolates) after treating with metronidazole at the concentration of 0.001 mg/ml. High number of cells in post-treated isolates coincided with increase of apoptosis. There was a significant increase in cysteine protease of Blastocystis sp. isolates upon treatment despite the initial predominance of serine protease in asymptomatic isolates. Metronidazole resistant Blastocystis sp. also showed significant increase in cancer cell proliferation. Resistance to metronidazole did not show significant different influence on the pathogenicity between Blastocystis sp. isolated from urban and orang asli individual. However, an increase in parasite numbers, higher amoebic forms, cysteine protease and ability to proliferate cancer cells implicates a pathogenic role. The study provides evidence for the first time, the effect of metronidazole towards enhancing pathogenic potentials in Blastocystis sp. when isolated from different gut environment. This necessitates the need for reassessment of metronidazole treatment modalities.
Collapse
Affiliation(s)
- Arutchelvan Rajamanikam
- Depatment of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ho Shiaw Hooi
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Madhav Kudva
- Gastroenterology and Hepatology Specialist Clinic, Pantai Hospital, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Kumar
- Depatment of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|