1
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
2
|
Díaz-Morales DM, Bommarito C, Knol J, Grabner DS, Noè S, Rilov G, Wahl M, Guy-Haim T, Sures B. Parasitism enhances gastropod feeding on invasive and native algae while altering essential energy reserves for organismal homeostasis upon warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160727. [PMID: 36502976 DOI: 10.1016/j.scitotenv.2022.160727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 °C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 °C and lipids at 22 °C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.
Collapse
Affiliation(s)
- Dakeishla M Díaz-Morales
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| | - Claudia Bommarito
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - Jeffrey Knol
- Groningen Institute for Evolutionary Life Sciences - GELIFES, University of Groningen, Groningen, the Netherlands.
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.
| | - Simona Noè
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel; Stazione Zoologica Anton Dohrn, Marine Animal Conservation and Public Engagement, Naples, Italy.
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel; The Leon H. Charney School of Marine Sciences, Marine Biology Department, University of Haifa, Mt. Carmel, Haifa, 31905, Israel.
| | - Martin Wahl
- Benthic and Experimental Ecology Department, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Díaz-Morales DM, Khosravi M, Grabner DS, Nahar N, Bommarito C, Wahl M, Sures B. The trematode Podocotyle atomon modulates biochemical responses of Gammarus locusta to thermal stress but not its feeding rate or survival. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159946. [PMID: 36343811 DOI: 10.1016/j.scitotenv.2022.159946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.
Collapse
Affiliation(s)
- Dakeishla M Díaz-Morales
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Maral Khosravi
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Nazmun Nahar
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Claudia Bommarito
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Martin Wahl
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| |
Collapse
|
4
|
Varas O, Pulgar J, Duarte C, García-Herrera C, Abarca-Ortega A, Grenier C, Rodríguez-Navarro AB, Zapata J, Lagos NA, García-Huidobro MR, Aldana M. Parasitism by metacercariae modulates the morphological, organic and mechanical responses of the shell of an intertidal bivalve to environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154747. [PMID: 35337870 DOI: 10.1016/j.scitotenv.2022.154747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental variation alters biological interactions and their ecological and evolutionary consequences. In coastal systems, trematode parasites affect their hosts by disrupting their life-history traits. However, the effects of parasitism could be variable and dependent on the prevailing environmental conditions where the host-parasite interaction occurs. This study compared the effect of a trematode parasite in the family Renicolidae (metacercariae) on the body size and the shell organic and mechanical characteristics of the intertidal mussels Perumytilus purpuratus, inhabiting two environmentally contrasting localities in northern and central Chile (ca. 1600 km apart). Congruent with the environmental gradient along the Chilean coast, higher levels of temperature, salinity and pCO2, and a lower pH characterise the northern locality compared to that of central Chile. In the north, parasitised individuals showed lower body size and shell resistance than non-parasitised individuals, while in central Chile, the opposite pattern was observed. Protein level in the organic matter of the shell was lower in the parasitised hosts than in the non-parasitised ones regardless of the locality. However, an increase in polysaccharide levels was observed in the parasitised individuals from central Chile. These results evidence that body size and shell properties of P. purpuratus vary between local populations and that they respond differently when confronting the parasitism impacts. Considering that the parasite prevalence reaches around 50% in both populations, if parasitism is not included in the analysis, the true response of the host species would be masked by the effects of the parasite, skewing our understanding of how environmental variables will affect marine species. Considering parasitism and identifying its effects on host species faced with environmental drivers is essential to understand and accurately predict the ecological consequences of climate change.
Collapse
Affiliation(s)
- Oscar Varas
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultas de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Aldo Abarca-Ortega
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain; Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain
| | | | - Javier Zapata
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile.
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| |
Collapse
|
5
|
Magalhães L, Freitas R, de Montaudouin X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J Invertebr Pathol 2020; 177:107479. [PMID: 33039398 DOI: 10.1016/j.jip.2020.107479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Bivalve stocks have been decreasing in the last decades largely due to emergent diseases and consequent mass mortality episodes. Cerastoderma edule (the edible cockle) is one of the most exploited bivalves in Europe and is among the most common hosts for trematodes, the most prevalent macroparasites in coastal waters but yet poorly studied. Therefore, in the present study, this bivalve species was used as host model to determine if trematode infection exerts a negative effect on bivalve energy metabolism and balance and if the tissues targeted by different trematodes influence the metabolic cost, with physiological and biochemical consequences. Cockles were experimentally infected with two trematode species, Himasthla elongata and Renicola roscovitus, that infect the foot and palps, respectively. Trematode infection exerted a negative effect on the metabolism of C. edule, the second intermediate host, by reduction of oxygen consumption. A different host biochemical response was found depending on trematode species, especially in regard to the level of oxygen consumption decrease and the preferential accumulation of lipids and glycogen. This study represents a step towards the understanding of host-trematode relationships that can be used to better predict potential conservation threats to bivalve populations and to maximize the success of stock and disease management.
Collapse
Affiliation(s)
- Luísa Magalhães
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| | - Rosa Freitas
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Xavier de Montaudouin
- CNRS, UMR EPOC, Université de Bordeaux, Station Marine, 2, rue du Pr Jolyet, F-33120 Arcachon, France
| |
Collapse
|
6
|
Haggerty CJE, Bakhoum S, Civitello DJ, De Leo GA, Jouanard N, Ndione RA, Remais JV, Riveau G, Senghor S, Sokolow SH, Sow S, Wolfe C, Wood CL, Jones I, Chamberlin AJ, Rohr JR. Aquatic macrophytes and macroinvertebrate predators affect densities of snail hosts and local production of schistosome cercariae that cause human schistosomiasis. PLoS Negl Trop Dis 2020; 14:e0008417. [PMID: 32628666 PMCID: PMC7365472 DOI: 10.1371/journal.pntd.0008417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Schistosomiasis is responsible for the second highest burden of disease among neglected tropical diseases globally, with over 90 percent of cases occurring in African regions where drugs to treat the disease are only sporadically available. Additionally, human re-infection after treatment can be a problem where there are high numbers of infected snails in the environment. Recent experiments indicate that aquatic factors, including plants, nutrients, or predators, can influence snail abundance and parasite production within infected snails, both components of human risk. This study investigated how snail host abundance and release of cercariae (the free swimming stage infective to humans) varies at water access sites in an endemic region in Senegal, a setting where human schistosomiasis prevalence is among the highest globally. Methods/Principal findings We collected snail intermediate hosts at 15 random points stratified by three habitat types at 36 water access sites, and counted cercarial production by each snail after transfer to the laboratory on the same day. We found that aquatic vegetation was positively associated with per-capita cercarial release by snails, probably because macrophytes harbor periphyton resources that snails feed upon, and well-fed snails tend to produce more parasites. In contrast, the abundance of aquatic macroinvertebrate snail predators was negatively associated with per-capita cercarial release by snails, probably because of several potential sublethal effects on snails or snail infection, despite a positive association between snail predators and total snail numbers at a site, possibly due to shared habitat usage or prey tracking by the predators. Thus, complex bottom-up and top-down ecological effects in this region plausibly influence the snail shedding rate and thus, total local density of schistosome cercariae. Conclusions/Significance Our study suggests that aquatic macrophytes and snail predators can influence per-capita cercarial production and total abundance of snails. Thus, snail control efforts might benefit by targeting specific snail habitats where parasite production is greatest. In conclusion, a better understanding of top-down and bottom-up ecological factors that regulate densities of cercarial release by snails, rather than solely snail densities or snail infection prevalence, might facilitate improved schistosomiasis control. Over 800 million people are at risk of schistosomiasis and environmental factors that regulate densities of cercariae parasites that infect humans remain poorly understood. We sampled a spatially extensive area at 36 water-access points in northern Senegal, and quantified densities of snail intermediate hosts, snail predators, and aquatic vegetation in each sample, as well as cercariae released from snails after they were brought to the laboratory. We found that the quantity of submerged aquatic vegetation, particularly Ceratophyllum spp., was positively associated with schistosome cercariae released per infected snail, and total potential cercariae released by the collected snails per water access site. In contrast, the abundance of aquatic predators near infected snails (in the same sweep) was negatively associated with the per-capita cercarial release by infected snails, but positively associated with total snail abundance per site. Additionally, snail densities and potential cercarial densities (estimated as the sum of cercariae released by all collected, infected snails at a site) were only weakly correlated, suggesting that snail densities alone might not accurately reflect total potential of those snails to emit schistosome cercariae. Overall, a better understanding of aquatic factors that can influence the production of schistosome cercariae under field conditions, rather than snail host abundance alone, might facilitate improvements in schistosomiasis monitoring and control.
Collapse
Affiliation(s)
- Christopher J. E. Haggerty
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| | | | - David J. Civitello
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Giulio A. De Leo
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Nicolas Jouanard
- Station d'Innovation Aquacole, Saint-Louis, Senegal
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Raphael A. Ndione
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Justin V. Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Gilles Riveau
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
- Institut Pasteur de Lille—CIIL, France
| | - Simon Senghor
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Susanne H. Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Souleymane Sow
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Caitlin Wolfe
- College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Isabel Jones
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Andrew J. Chamberlin
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Jason R. Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|