1
|
Cui Z, Du F, Yu W, Wang Z, Kong F, Xie Z, Zhao Q, Zhang H, Wang H, Fan H, Ren L. Alterations of mouse gut microbiome in alveolar echinococcosis. Heliyon 2024; 10:e32860. [PMID: 38988523 PMCID: PMC11234002 DOI: 10.1016/j.heliyon.2024.e32860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Alveolar echinococcosis (AE) may affect the composition of the host's gut microbiota, potentially disrupting the balance between the gut microbiota and metabolites. Metagenomics and untargeted metabolomics were employed to characterize changes in the gut microbiota and metabolites in mouse models infected with E. multilocularis. Pearson correlation coefficients were calculated to compare the distribution of microbiota and metabolites, revealing synergistic or mutually exclusive relationships. Functional outputs of the gut microbiota were explored using the CAZy database and six enzymes involved in carbohydrate metabolism were identified with statistically significant differential expression between infected and control groups. The resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database from the metagenomes of the groups. Firmicutes are the main carrier of ARGs in the host gut with tetQ being most prevalent. Antibiotic efflux, inactivation and target modification were the principal mechanisms of resistance. Comparison and analysis of two sets of antibiotic metabolic pathways allowed the identification of enzyme reactions unique to infected mice. KEGG pathway overview shows phenazine biosynthesis involving phzG to be one of them. In conclusion, infection with AE in mice leads to an overall disruption of gut microbiota and metabolites with the involvement of enzymes related to carbohydrate metabolism. Furthermore, antibiotic-resistance genes may play a role in disease progression, offering potential insights into the relationship between antibiotic use in AE and treatment outcomes.
Collapse
Affiliation(s)
- Ziyan Cui
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Department of Postgraduate, Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Fei Du
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Department of Postgraduate, Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Wenhao Yu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Fanyu Kong
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Zhi Xie
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Qian Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Hanxi Zhang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, 810001, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, 810001, China
| |
Collapse
|
2
|
Toews E, Musiani M, Smith A, Checkley S, Visscher D, Massolo A. Risk factors for Echinococcus multilocularis intestinal infections in owned domestic dogs in a North American metropolis (Calgary, Alberta). Sci Rep 2024; 14:5066. [PMID: 38429417 PMCID: PMC10907371 DOI: 10.1038/s41598-024-55515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Human alveolar echinococcosis is increasingly documented in Alberta, Canada. Its causative agent, Echinococcus multilocularis (Em), can be transmitted to humans by infected dogs. We assessed the prevalence and associated risk factors for Em infections in domestic dogs in Calgary, Alberta, Canada. In this cross-sectional study that coupled collection and assessment of dog feces with a survey on potential risk factors, 13 of 696 (Bayesian true prevalence, 2.4%; 95% CrI: 1.3-4.0%) individual dogs' feces collected during August and September 2012 were qPCR positive for Em. Sequencing two of these cases indicated that both were from the same Em European strain responsible for human infections in Alberta. Likelihood of intestinal Em was 5.6-times higher in hounds than other breeds, 4.6-times higher in dogs leashed at dog parks than those allowed off-leash, 3.1-times higher in dogs often kept in the backyard during spring and summer months than those rarely in the yard, and 3.3-times higher in dogs living in neighbourhoods bordering Bowmont park than those in other areas of Calgary. This situation warrants surveillance of dog infections as a preventative measure to reduce infections in North America.
Collapse
Affiliation(s)
- Emilie Toews
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Marco Musiani
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Anya Smith
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - Sylvia Checkley
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Darcy Visscher
- Department of Biology, The King's University, Edmonton, AB, Canada
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alessandro Massolo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Ethology Unit, Department of Biology, University of Pisa, Via Volta 6, 56126, Pisa, Italy.
- UMR CNRS 6249 Chrono-Environnement, Université Franche-Comté, Besançon, France.
| |
Collapse
|
3
|
Visscher DR, Toews E, Pattison J, Walker PD, Kemna C, Musiani M, Massolo A. Host spatiotemporal overlap in a park with high endemicity of Echinococcus multilocularis. FRONTIERS IN PARASITOLOGY 2023; 2:1161108. [PMID: 39816820 PMCID: PMC11732005 DOI: 10.3389/fpara.2023.1161108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 01/18/2025]
Abstract
Background There has been a spate of recent cases of human alveolar echinococcosis (AE) in Alberta, Canada. Alveolar echinococcosis is caused by Echinococcus multilocularis, which is prevalent among coyote populations and present in domestic dogs in Alberta. Methods and results Using qPCR, we estimated the seasonal fecal prevalence of E. multilocularis in coyotes and dogs in a multiuse recreation area close to Edmonton, Alberta, where we also setup remote cameras to model seasonal changes in the overlap in temporal activity and the spatial intensity of use among coyotes, humans, and dogs, as a proxy of potential transmission. We detected E. multilocularis in 18 of 137 wild canid feces and none in 44 dog feces. After correcting for the qPCR test's sensitivity and specificity, we estimated at 15.7% (9.7-22.7%, 95% CrI) the true fecal prevalence for coyotes. Temporal overlap between coyotes and both humans and dogs increased in the fall and winter relative to the spring and summer. Coyote intensity of use showed seasonal variations and was higher on maintained trails and locations closer to visitor parking and at sites with high intensity of dog use. Conclusions Our results reinforce the need of an integrated approach, typical of both One-Health and Eco-Health, to park management for minimizing the likelihood of transmission where human and dog activity results in significant overlap with the one of the natural definitive hosts of zoonotic parasites.
Collapse
Affiliation(s)
- Darcy R. Visscher
- Department of Biology, The King’s University, Edmonton, AB, Canada
- Department of Biological Science, University of AB, Edmonton, AB, Canada
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Emilie Toews
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jesse Pattison
- Department of Biology, The King’s University, Edmonton, AB, Canada
| | - Philip D. Walker
- Department of Biological Science, University of AB, Edmonton, AB, Canada
| | - Colborne Kemna
- Department of Biology, The King’s University, Edmonton, AB, Canada
| | - Marco Musiani
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biology, University of Pisa, Pisa, Italy
- UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
4
|
Marchiori E, Obber F, Celva R, Marcer F, Danesi P, Maurizio A, Cenni L, Massolo A, Citterio CV, Cassini R. Comparing copromicroscopy to intestinal scraping to monitor red fox intestinal helminths with zoonotic and veterinary importance. Front Vet Sci 2023; 9:1085996. [PMID: 36713854 PMCID: PMC9878611 DOI: 10.3389/fvets.2022.1085996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
The red fox acts as reservoir for several helminthic infections which are of interest for both public and animal health. Huge efforts have been made for the assessment of the sensitivity of coprological tests for the detection of Echinococcus multilocularis, while less attention has been paid to other helminthic species. This study aimed at assessing the performance of two copromicroscopic techniques in the detection and prevalence estimation of gastrointestinal helminths in the red fox. Helminths were isolated from the small intestines of 150 red foxes from Bolzano province, Italy, with a scraping, filtration and counting technique (SFCT) and morphologically identified. Rectal contents were collected and submitted to simple flotation (FT) and, only for Taenids, a method based on the concentration of eggs and identification with multiplex PCR (CMPCR). Using SFCT as a reference standard, we estimated the sensitivity of the copromicroscopic tests. Three species of nematodes (namely, Toxocara canis, Uncinaria stenocephala and Pterygodermatites sp.) and five species of cestodes (E. multilocularis, Taenia crassiceps, T. polycantha, Hydatigera taeniaeformis, Mesocestoides sp.) were identified with SFCT, whereas eggs referable to the same taxa were detected with fecal diagnostics, except for Pterygodermatites sp. and Mesocestoides sp. The sensitivity of FT was low for all taxa, ranging from 9.8 to 36.3%, with lower values for Taeniidae. CMPCR was confirmed to perform better for the detection of Taeniidae eggs (23.5%) and the multiplex PCR on retrieved eggs was effective in the identification of the species. A meta-analysis of literature also suggested that our results are consistent with existing data, indicating that copromicroscopy tends to underestimate the prevalence of helminthic infections. The extent of such underestimation varies with taxon, being higher at high prevalence levels, in particular for cestodes. Irregular dynamics of egg shedding, and routine deep freezing of red fox feces may explain the frequency of false negatives with copromicroscopy. Low sensitivity of copromicroscopic tests should be accounted for when estimating prevalence and when defining the correct sample size for the detection of the parasites.
Collapse
Affiliation(s)
- Erica Marchiori
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy,*Correspondence: Erica Marchiori ✉
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Roberto Celva
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
| | - Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Anna Maurizio
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
| | - Lucia Cenni
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Massolo
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy,Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada,UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | | | - Rudi Cassini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
| |
Collapse
|
5
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
6
|
A highly endemic area of Echinococcus multilocularis identified through a comparative re-assessment of prevalence in the red fox (Vulpes vulpes), Alto Adige (Italy: 2019–2020). PLoS One 2022; 17:e0268045. [PMID: 35511816 PMCID: PMC9070940 DOI: 10.1371/journal.pone.0268045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Surveillance of Echinococcus multilocularis at the edge of its range is hindered by fragmented distributional patterns and low prevalence in definitive hosts. Thus, tests with adequate levels of sensitivity are especially important for discriminating between infected and non-infected areas. In this study we reassessed the prevalence of E. multilocularis at the southern border of its distribution in Province of Bolzano (Alto Adige, northeastern Alps, Italy), to improve surveillance in wildlife and provide more accurate estimates of exposure risk. We compared the diagnostic test currently implemented for surveillance based on coproscopy and multiplex PCR (CMPCR) to a real-time quantitative PCR (qPCR) in 235 fox faeces collected in 2019 and 2020. The performances of the two tests were estimated using a scraping technique (SFCT) applied to the small intestines of a subsample (n = 123) of the same foxes as the reference standard. True prevalence was calculated and the sample size required by each faecal test for the detection of the parasite was then estimated. True prevalence of E. multilocularis in foxes (14.3%) was markedly higher than reported in the last decade, which was never more than 5% from 2012 to 2018 in the same area. In addition, qPCR showed a much higher sensitivity (83%) compared to CMPCR (21%) and agreement with the reference standard was far higher for qPCR (0.816) than CMPCR (0.298) meaning that for the latter protocol, a smaller sample size would be required to detect the disease. Alto Adige should be considered a highly endemic area. Routine surveillance on definitive hosts at the edges of the E. multilocularis distribution should be applied to smaller geographic areas, and rapid, sensitive diagnostic tools using directly host faeces, such as qPCR, should be adopted.
Collapse
|
7
|
Massolo A, Gerber A, Umhang G, Nicholas C, Liccioli S, Mori K, Klein C. Droplet digital PCR as a sensitive tool to assess exposure pressure from Echinococcus multilocularis in intermediate hosts. Acta Trop 2021; 223:106078. [PMID: 34363776 DOI: 10.1016/j.actatropica.2021.106078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
A key element to understanding parasite epidemiology is assessing their prevalence in the respective wild reservoir hosts. The tapeworm Echinococcus multilocularis circulates between canid species (definite hosts) and small mammals (mostly rodents; intermediate hosts). Prevalence rates of Echinococcus multilocularis in the intermediate host are most exclusively determined through macroscopic examination of the liver generally followed by molecular or histological diagnostic for parasite species confirmation. The overall objective of the study was to investigate the suitability of Real-Time PCR and Droplet Digital PCR (ddPCR) analysis as tool to detect exposure pressure (frequency of infection events) from E. multilocularis in intermediate hosts even in the absence of macroscopic lesions in the liver. One hundred six small mammals (meadow voles and deer mice) were trapped followed by post-mortem examination including macroscopic evaluation of the liver to detect lesions indicative of infection with Echinococcus multilocularis but also by sampling a piece of liver in absence of lesion to submit it to molecular assay. Macroscopic lesions were present in the livers of two samples. Including the latter two samples, five samples yielded a positive result following Real-Time PCR, whereas 16 samples displayed three or more positive droplets upon ddPCR and were considered positive. Whether these additional cases without macroscopic lesions would have become infectious during the lifespan of the rodent or were abortive or early infections is unclear, but these data suggest levels of exposure of intermediate hosts to the parasite is much higher than assumed.
Collapse
|
8
|
Santa MA, Rezansoff AM, Chen R, Gilleard JS, Musiani M, Ruckstuhl KE, Massolo A. Deep amplicon sequencing highlights low intra-host genetic variability of Echinococcus multilocularis and high prevalence of the European-type haplotypes in coyotes and red foxes in Alberta, Canada. PLoS Negl Trop Dis 2021; 15:e0009428. [PMID: 34038403 PMCID: PMC8153462 DOI: 10.1371/journal.pntd.0009428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
Echinococcus multilocularis (Em) is a zoonotic parasite considered a global emergent pathogen. Recent findings indicate that the parasite is expanding its range in North America and that European-type haplotypes are circulating in western Canada. However, genetic analyses are usually conducted only on a few parasites out of thousands of individuals within each definitive host, likely underestimating the prevalence of less common haplotypes. Moreover, mixed infections with several mtDNA haplotypes in the same host have been reported, but their relative abundance within the host was never estimated. We aimed to 1) estimate the frequency of co-infections of different Em haplotypes in coyotes (Canis latrans) and red foxes (Vulpes vulpes) from western Canada and their relative abundance within the definitive hosts, 2) detect less prevalent haplotypes by sampling a larger proportion of the parasite subpopulation per host, and 3) investigate differences in the distribution of Em haplotypes in these main definitive hosts; foxes and coyotes. We extracted DNA from ~10% of the worm subpopulation per host (20 foxes and 47 coyotes) and used deep amplicon sequencing (NGS technology) on four loci, targeting the most polymorphic regions from the mitochondrial genes cox1 (814 bp), nad1 (344 bp), and cob (387 bp). We detected the presence of mixed infections with multiple Em haplotypes and with different Echinococcus species including Em and E. granulosus s.l. genotypes G8/G10, low intraspecific diversity of Em, and a higher abundance of the European-type haplotypes in both hosts. Our results suggest a population expansion of the European over the North American strain in Alberta and a limited distribution of some European-type haplotypes. Our findings indicate that deep amplicon sequencing represents a valuable tool to characterize Em in multiple hosts, to assess the current distribution and possible origins of the European strain in North America. The potential use of next-generation sequencing technologies is particularly important to understand the patterns of geographic expansion of this parasite.
Collapse
Affiliation(s)
- Maria A. Santa
- Biological Sciences Department, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Andrew M. Rezansoff
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions (HPI) program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Chen
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions (HPI) program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Host Parasite Interactions (HPI) program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Musiani
- Biological Sciences Department, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Kathreen E. Ruckstuhl
- Biological Sciences Department, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
- UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|