1
|
Ponomarev D, Lvova M, Mordvinov V, Chidunchi I, Dushkin A, Avgustinovich D. Anti-Opisthorchis felineus effects of artemisinin derivatives: An in vitro study. Acta Trop 2024; 254:107196. [PMID: 38521124 DOI: 10.1016/j.actatropica.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The drug of choice for the treatment of opisthorchiasis caused by trematodes Opisthorchis viverrini and O. felineus is praziquantel (PZQ), but there is a constant search for new anthelmintics, including those of plant origin. Positive results on the use of artemisinin derivatives against O. viverrini opisthorchiasis have been shown previously, but the effect of these compounds on O. felineus has not been studied. Therefore, here, a comparative analysis of anthelmintic properties of artemisinin derivatives (artesunate [AS], artemether [AM], and dihydroartemisinin [DHA]) was carried out in vitro in relation to PZQ. Experiments were performed on newly excysted metacercariae (NEMs) and adult flukes of O. felineus. RESULTS Dose- and time-dependent effects of artemisinin derivatives and of PZQ were assessed in terms of motility and mortality of both NEMs and adult flukes. The most pronounced anthelmintic action was exerted by DHA, whose half-maximal inhibitory concentrations (IC50) of 1.9 (NEMs) and 2.02 µg/mL (adult flukes) were lower than those of PZQ (0.56 and 0.25 µg/mL, respectively). In contrast to PZQ, the effects of DHA and AS were similar when we compared the two developmental stages of O. felineus (NEMs and adult flukes). In addition, AM, AS, and especially DHA at doses of 100 µg/mL disrupted tegument integrity in adult flukes, which was not observed with PZQ. CONCLUSIONS Artemisinin derivatives (AS, AM, and DHA) have good anthelmintic efficacy against the trematode O. felineus, and the action of these substances is comparable to (and sometimes better than) the effects of PZQ.
Collapse
Affiliation(s)
- Denis Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk, 630090, Russia.
| | - Maria Lvova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Viatcheslav Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Irina Chidunchi
- Toraighyrov University, Lomov Str. 64, Pavlodar, 140000, Kazakhstan
| | - Alexander Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze Str. 18, Novosibirsk, 630090, Russia
| | - Damira Avgustinovich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk, 630090, Russia; Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze Str. 18, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Liu C, Fisher D, Pronyuk K, Musabaev E, Thu Hien NT, Dang Y, Zhao L. Therapeutic potential of natural products in schistosomiasis-associated liver fibrosis. Front Pharmacol 2024; 15:1332027. [PMID: 38770001 PMCID: PMC11102961 DOI: 10.3389/fphar.2024.1332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease that endangers human health and social development. The granulomatous reaction of Schistosoma eggs in the liver is the main cause of hepatosplenomegaly and fibrotic lesions. Anti liver fibrosis therapy is crucial for patients with chronic schistosomiasis. Although Praziquantel is the only clinical drug used, it is limited in insecticide treatment and has a long-term large-scale use, which is forcing the search for cost-effective alternatives. Previous research has demonstrated that plant metabolites and extracts have effective therapeutic effects on liver fibrosis associated with schistosomiasis. This paper summarizes the mechanisms of action of metabolites and some plant extracts in alleviating schistosomiasis-associated liver fibrosis. The analysis was conducted using databases such as PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) databases. Some plant metabolites and extracts ameliorate liver fibrosis by targeting multiple signaling pathways, including reducing inflammatory infiltration, oxidative stress, inhibiting alternate macrophage activation, suppressing hepatic stellate cell activation, and reducing worm egg load. Natural products improve liver fibrosis associated with schistosomiasis, but further research is needed to elucidate the effectiveness of natural products in treating liver fibrosis caused by schistosomiasis, as there is no reported data from clinical trials in the literature.
Collapse
Affiliation(s)
- Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Villamizar-Monsalve MA, López-Abán J, Vicente B, Peláez R, Muro A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin Pharmacother 2024; 25:409-420. [PMID: 38511392 DOI: 10.1080/14656566.2024.2333372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Schistosomiasis, one of the current Neglected Tropical Diseases (NTDs) affects over 230 million people globally, with nearly 700 million at risk in more than 74 countries. Praziquantel (PZQ) has served as the primary treatment for the past four decades; however, its effectiveness is limited as it solely eliminates adult worms. In regions where infections are frequent, PZQ exhibits only temporary efficacy and has restricted potential to disrupt the prolonged transmission of the disease. AREAS COVERED A comprehensive exploration using the PubMed database was conducted to review current pharmacotherapy approaches for schistosomiasis. This review also encompasses recent research findings related to potential novel therapeutics and the repurposing of existing drugs. EXPERT OPINION Current schistosoma treatment strategies, primarily relying on PZQ, face challenges like temporary effectiveness and limited impact on disease transmission. Drug repurposing, due to economic constraints, is decisive for NTDs. Despite PZQ's efficacy, its failure to prevent reinfection highlights the need for complementary strategies, especially in regions with persistent environmental foci. Integrating therapies against diverse schistosome stages boosts efficacy and impedes resistance. Uncovering novel agents is essential to address resistance concerns in tackling this neglected tropical disease. Integrated strategies present a comprehensive approach to navigate the complex challenges.
Collapse
Affiliation(s)
- María Alejandra Villamizar-Monsalve
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Rafael Peláez
- Organic and Pharmaceutical Chemistry Department, Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| |
Collapse
|
4
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
5
|
Costa DDS, Leal CM, Cajas RA, Gazolla MC, Silva LM, Carvalho LSAD, Lemes BL, Moura ROD, Almeida JD, de Moraes J, da Silva Filho AA. Antiparasitic properties of 4-nerolidylcatechol from Pothomorphe umbellata (L.) Miq. (Piperaceae) in vitro and in mice models with either prepatent or patent Schistosoma mansoni infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116607. [PMID: 37149066 DOI: 10.1016/j.jep.2023.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Roots of Pothomorphe umbellata (L.) Miq. are used in traditional medicine of Africa and South America for the treatment of malaria and helminthiasis. However, neither P. umbellata nor its isolated compounds have been evaluated against Schistosoma species. AIMS OF THIS STUDY To investigate the antischistosomal effects of P. umbellata root extracts and the isolated compound 4-nerolidylcatechol (4-NC) against Schistosoma mansoni ex vivo and in murine models of schistosomiasis. MATERIALS AND METHODS The crude hydroalcoholic (PuE) and hexane (PuH) extracts of P. umbellata roots were prepared and initially submitted to an ex vivo phenotypic screening against adult S. mansoni. PuH was analyzed by HPLC-DAD, characterized by UHPLC-HRMS/MS, and submitted to chromatographic fractionation, leading to the isolation of 4-NC. The anthelmintic properties of 4-NC were assayed ex vivo against adult schistosomes and in murine models of schistosomiasis for both patent and prepatent S. mansoni infections. Praziquantel (PZQ) was used as a reference compound. RESULTS PuE (EC50: 18.7 μg/mL) and PuH (EC50: 9.2 μg/mL) kill adult schistosomes ex vivo. The UHPLC-HRMS/MS analysis of PuH, the most active extract, revealed the presence of 4-NC, peltatol A, and peltatol B or C. After isolation from PuH, 4-NC presented remarkable in vitro schistosomicidal activity with EC50 of 2.9 μM (0.91 μg/mL) and a selectivity index higher than 68 against Vero mammalian cells, without affecting viability of nematode Caenorhabditis elegans. In patent S. mansoni infection, the oral treatment with 4-NC decreased worm burden and egg production in 52.1% and 52.3%, respectively, also reducing splenomegaly and hepatomegaly. 4-NC, unlike PZQ, showed in vivo efficacy against juvenile S. mansoni, decreasing worm burden in 52.4%. CONCLUSIONS This study demonstrates that P. umbellata roots possess antischistosomal activity, giving support for the medicinal use of this plant against parasites. 4-NC was identified from P. umbellata roots as one of the effective in vitro and in vivo antischistosomal compound and as a potential lead for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Danilo de Souza Costa
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Carla Monteiro Leal
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Rayssa A Cajas
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Matheus Coutinho Gazolla
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lívia Mara Silva
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Bruna L Lemes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Renato Oliveira de Moura
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Juliana de Almeida
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Ademar A da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
6
|
Pan H, Deng M, Zhang B, Fang T, Liu Y. Transcriptome analysis of Tetrahymena thermophila response to exposure with dihydroartemisinin. Heliyon 2023; 9:e14069. [PMID: 36923843 PMCID: PMC10008979 DOI: 10.1016/j.heliyon.2023.e14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Dihydroartemisinin (DHA) is a derivative of artemisinin and is toxic to parasites. We used the Tetrahymena thermophila (T. thermophila) as a model to explore DHA toxicity. Results showed that low concentration of DHA (20 μmol/L) promoted cell proliferation, whereas high concentrations of DHA (40-1280 μmol/L) inhibited that. Appearance of nucleus was pycnosis by laser scanning confocal microscope. DHA significantly elevated activities of SOD and GSH-Px (P < 0.01) and MDA was markedly increased at high level but decreased at low level (P < 0.01). Further results of transcriptome in T. thermophila treated with different concentration DHA group (0, 20, 160 μmol/L) showed that differentially expressed genes (DEGs) were involved in oxidation-reduction and metabolism of exogenous substances indicated oxidative stress stimulation. Kyoto Encyclopedia of Genes and Genomes showed that DEGs were involved in the cytochrome P450-mediated metabolism of exogenous substances, glutathione metabolism and ABC transport. Remarkably, DNA replication was significantly enriched in low concentration DHA, energy metabolism related pathways and necrotic process were considerably enriched in high concentration DHA. The results of RT-qPCR of 13 DEGs were the same as that of transcriptome, in which the expression of GST and GPx family genes were significantly altered after exposed to high-DHA group. DHA induced oxidative stress damage through disturbing with energy. However, detoxification pathways in T. thermophila to resist oxidative damage and cell alleviated low concentration DHA stress by regulating antioxidant enzyme. This study provides good practice on pharmacological mechanism of artemisinin-based drugs in antiparasitic.
Collapse
Affiliation(s)
- Houjun Pan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Meiling Deng
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bin Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Tiantian Fang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yuguo Liu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
7
|
In Vitro Cercaricidal and Schistosomicidal Activities of the Raffia Wine and Hydroethanolic Extracts of Pedilanthus tithymaloides Linn (Poit). Stem Barks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2672150. [PMID: 36159554 PMCID: PMC9507742 DOI: 10.1155/2022/2672150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Schistosomiasis control remains a public health concern, and there is a need to evaluate new strategies for targeting larval and adult stages of the parasite. As Pedilanthus tithymaloides is empirically used to treat schistosomiasis, it becomes essential to know its effective action scientifically. This study assessed the cercaricidal and schistosomicidal activity of P. tithymaloides stem barks raffia wine extract (RwPt) and hydroethanolic extract (HePt). Different concentrations of these extracts were tested against cercariae (31.25–1000 μg/mL) and adult worms (62.5–2000 μg/mL) of Schistosoma mansoni. Niclosamide-olamine 5% (1 μg/mL) and praziquantel (10 μg/mL) were used as pharmacological controls. Cercariae viability was determined every 30 min for 180 min, and adult worms’ motor activity and viability after 24 and 48 h incubation. In addition, cytotoxicity and phytochemical analysis were performed. HePt was lethal to cercariae and adult worms with LC50 of 73.91 μg/mL after 60 min of incubation and 731.17 μg/mL after 48 h of incubation, respectively. Furthermore, a significant reduction of 94.44% in motor activity was observed in surviving worms at the concentration of 2000 μg/mL. RwPt was less effective on S. mansoni cercariae with an LC50 of 617.86 μg/mL after 180 min and on adult worms with a mortality rate of 9.83% at 2000 μg/mL for 48 h incubation. Both extracts showed a weak cytotoxicity profile with an IC50 of 983.50 μg/mL for HePt and more than 1000 μg/mL for RwPt. The LC-MS analysis of HePt allowed the detection of two annotated diterpenoids. Based on the selectivity index, the hydroethanolic extract of P. tithymaloides stem barks disclosed an intense cercaricidal activity and a moderate schistosomicidal effect with low cytotoxicity. These findings may support the potential use of Pedilanthus tithymaloides as a natural product or a source of natural-derived compounds for interrupting schistosomiasis transmission.
Collapse
|
8
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop 2021; 213:105741. [PMID: 33159900 DOI: 10.1016/j.actatropica.2020.105741] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Schistosomiasis is a neglected disease caused by helminth flatworms of the genus Schistosoma, affecting over 240 million people in more than 70 countries. The treatment relies on a single drug, praziquantel, making urgent the discovery of new compounds. Aurones are a natural type of flavonoids that display interesting pharmacological activities, particularly as chemotherapeutic agents against parasites. In pursuit of treatment alternatives, the present work conducted an in vitro and in vivo antischistosomal investigation with aurone derivatives against Schistosoma mansoni. After preparation of aurone derivatives and their in vitro evaluation on adult schistosomes, the three most active aurones were evaluated in cytotoxicity and haemolytic assays, as well as in confocal laser-scanning microscope studies, showing tegumental damage in parasites in a concentration-dependent manner with no haemolytic or cytotoxic potential toward mammalian cells. In a mouse model of schistosomiasis, at a single oral dose of 400 mg/kg, the selected aurones showed worm burden reductions of 35% to 65.0% and egg reductions of 25% to 70.0%. The most active thiophenyl aurone derivative 18, unlike PZQ, had efficacy in mice harboring juvenile S. mansoni, also showing significant inhibition of oviposition by parasites, giving support for the antiparasitic potential of aurones as lead compounds for novel antischistosomal drugs.
Collapse
|
10
|
In vitro and in vivo evaluation of cnicin from blessed thistle (Centaurea benedicta) and its inclusion complexes with cyclodextrins against Schistosoma mansoni. Parasitol Res 2020; 120:1321-1333. [PMID: 33164156 DOI: 10.1007/s00436-020-06963-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Schistosomiasis, caused by a blood fluke of the genus Schistosoma, afflicts over 230 million people worldwide. Treatment of the disease relies on just one drug, praziquantel. Cnicin (Cn) is the sesquiterpene lactone found in blessed thistle (Centaurea benedicta) that showed antiparasitic activities but has not been evaluated against Schistosoma. However, cnicin has poor water solubility, which may limit its antiparasitic activities. To overcome these restrictions, inclusion complexes with cyclodextrins may be used. In this work, we evaluated the in vitro and in vivo antischistosomal activities of cnicin and its complexes with β-cyclodextrin (βCD) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) against Schistosoma mansoni. Cnicin were isolated from C. benedicta by chromatographic fractionation. Complexes formed by cnicin and βCD (Cn/βCD), as well as by cnicin and HPβCD (Cn/HPβCD), were prepared by coprecipitation and characterized. In vitro schistosomicidal assays were used to evaluate the effects of cnicin and its complexes on adult schistosomes, while the in vivo antischistosomal assays were evaluated by oral and intraperitoneal routes. Results showed that cnicin caused mortality and tegumental alterations in adult schistosomes in vitro, also showing in vivo efficacy after intraperitoneal administration. The oral treatment with cnicin or Cn/βCD showed no significant worm reductions in a mouse model of schistosomiasis. In contrast, Cn/HPβCD complex, when orally or intraperitoneally administered to S. mansoni-infected mice, decreased the total worm load, and markedly reduced the number of eggs, showing high in vivo antischistosomal effectiveness. Permeability studies, using Nile red, indicated that HPβCD complex may reach the tegument of adult schistosomes in vivo. These results demonstrated the antischistosomal potential of cnicin in preparations with HPβCD.
Collapse
|
11
|
Zech J, Gold D, Salaymeh N, Sasson NC, Rabinowitch I, Golenser J, Mäder K. Oral Administration of Artemisone for the Treatment of Schistosomiasis: Formulation Challenges and In Vivo Efficacy. Pharmaceutics 2020; 12:E509. [PMID: 32503130 PMCID: PMC7356104 DOI: 10.3390/pharmaceutics12060509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Artemisone is an innovative artemisinin derivative with applications in the treatment of malaria, schistosomiasis and other diseases. However, its low aqueous solubility and tendency to degrade after solubilisation limits the translation of this drug into clinical practice. We developed a self-microemulsifying drug delivery system (SMEDDS), which is easy to produce (simple mixing) with a high drug load. In addition to known pharmaceutical excipients (Capmul MCM, Kolliphor HS15, propylene glycol), we identified Polysorb ID 46 as a beneficial new additional excipient. The physicochemical properties were characterized by dynamic light scattering, conductivity measurements, rheology and electron microscopy. High storage stability, even at 30 °C, was achieved. The orally administrated artemisone SMEDDS formulation was highly active in vivo in S. mansoni infected mice. Thorough elimination of the adult worms, their eggs and prevention of the deleterious granuloma formation in the livers of infected mice was observed even at a relatively low dose of the drug. The new formulation has a high potential to accelerate the clinical use of artemisone in schistosomiasis and malaria.
Collapse
Affiliation(s)
- Johanna Zech
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Netanel Cohen Sasson
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| |
Collapse
|
12
|
Effect of Praziquantel on Schistosoma mekongi Proteome and Phosphoproteome. Pathogens 2020; 9:pathogens9060417. [PMID: 32471184 PMCID: PMC7350297 DOI: 10.3390/pathogens9060417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/11/2023] Open
Abstract
Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. mekongi after PZQ treatment for elucidating its action. Furthermore, key kinases related to PZQ effects were predicted to identify alternative targets for novel drug development. Proteomes of S. mekongi were profiled after PZQ treatment at half maximal inhibitory concentration and compared with untreated worms. A total of 144 proteins were differentially expressed after treatment. In parallel, immunohistochemistry indicated a reduction of phosphorylation, with 43 phosphoproteins showing reduced phosphorylation, as identified by phosphoproteomic approach. Pathway analysis of mass spectrometric data showed that calcium homeostasis, worm antigen, and oxidative stress pathways were influenced by PZQ treatment. Interestingly, two novel mechanisms related to protein folding and proteolysis through endoplasmic reticulum-associated degradation pathways were indicated as a parasiticidal mechanism of PZQ. According to kinase–substrate predictions with bioinformatic tools, Src kinase was highlighted as the major kinase related to the alteration of phosphorylation by PZQ. Interfering with these pathways or applying Src kinase inhibitors could be alternative approaches for further antischistosomal drug development.
Collapse
|
13
|
Islam MT, Martorell M, Salehi B, Setzer WN, Sharifi-Rad J. Anti-Schistosoma mansoni effects of essential oils and their components. Phytother Res 2020; 34:1761-1769. [PMID: 32067278 DOI: 10.1002/ptr.6643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/25/2019] [Accepted: 01/31/2020] [Indexed: 01/18/2023]
Abstract
Schistosoma mansoni is endemic in 55 countries around the world. S. mansoni is a water-borne parasite of humans belonging to the group of blood flukes. Generally, schistosomiasis is treated with praziquantel, which results in frequent treatment failures and reinfections. Essential oils have diverse biological effects, including antimicrobial, antiprotozoal and antiparasitic. This review aimed at summarizing available in vitro, in vivo and clinical trials showing evidence and mechanisms of actions of essential oils and their derivatives acting against S. mansoni. The findings suggest that a number of essential oils and/or their components act against S. mansoni. Essential oils and/or their derivatives may be one of the potential sources of antischistosomal drugs.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), Concepción, Chile
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.,Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT, 84043, USA
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|