1
|
Carreira DSS, Sato CE, da Silva WB, de Bittencourt TCBDSC, Costa SL, Uzêda RS. In vitro anti-parasitic effect of the alkaloids harmaline and piperine on Toxoplasma gondii. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e001824. [PMID: 39292065 PMCID: PMC11452066 DOI: 10.1590/s1984-29612024053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024]
Abstract
Toxoplasma gondii is a coccidian protozoan of zoonotic importance that causes toxoplasmosis. Although the current treatments for toxoplasmosis may be associated with adverse effects and limited efficacy for different biological forms of the parasite, evidence suggests that alkaloid molecules such as harmaline and piperine exhibit antiparasitic effects against protozoa parasites. This investigation aimed to evaluate the in vitro effect of harmaline and piperine against T. gondii tachyzoites in infected Vero cell cultures. After 24 hours of host cell infection, the cultures were treated with harmaline or piperine (0.49 to 15.63 µg/mL). Negative and positive controls were RPMI/DMSO (0.1%) and sulfadiazine (200 µg/mL). Harmaline significantly reduced parasite multiplication by 20% compared to the negative control, while piperine decreased between 55.56% and 88.89% in a dose-dependent manner. According to an intracellular parasite proportion scale, it was observed that the Vero cells with low or moderate parasitic proliferation were more prevalent after the alkaloid treatment. The study demonstrated that the alkaloids had antiparasitic effects on T. gondii, with piperine being the most effective. Additional studies must be carried out to clarify other aspects of the action of the alkaloids on parasites.
Collapse
Affiliation(s)
- Daniele Silva Souza Carreira
- Laboratório de Toxicologia e Fitoterapia, Hospital de Medicina Veterinária, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| | - Carolina Emy Sato
- Laboratório de Toxicologia e Fitoterapia, Hospital de Medicina Veterinária, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| | - Waléria Borges da Silva
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| | | | - Silvia Lima Costa
- Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| | - Rosângela Soares Uzêda
- Laboratório de Toxicologia e Fitoterapia, Hospital de Medicina Veterinária, Universidade Federal da Bahia – UFBA, Salvador, BA, Brasil
| |
Collapse
|
2
|
Gudla CS, Selvam V, Selvaraj SS, Tripathi R, Joshi P, Shaham SH, Singh M, Shandil RK, Habib S, Narayanan S. Novel Baicalein-Derived Inhibitors of Plasmodium falciparum. Pathogens 2023; 12:1242. [PMID: 37887758 PMCID: PMC10610289 DOI: 10.3390/pathogens12101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria, a life-threatening mosquito-borne disease caused by Plasmodium parasites, continues to pose a significant global health burden. Despite notable progress in combating the disease in recent years, malaria remains prevalent in many regions, particularly in Southeast Asia and most of sub-Saharan Africa, where it claims hundreds of thousands of lives annually. Flavonoids, such as the baicalein class of compounds, are known to have antimalarial properties. In this study, we rationally designed and synthesized a series of baicalein derivatives and identified a lead compound, FNDR-10132, that displayed potent in vitro antimalarial activity against Plasmodium falciparum (P. falciparum), both chloroquine-sensitive (60 nM) and chloroquine-resistant (177 nM) parasites. FNDR-10132 was evaluated for its antimalarial activity in vivo against the chloroquine-resistant strain Plasmodium yoelii N67 in Swiss mice. The oral administration of 100 mg/kg of FNDR-10132 showed 44% parasite suppression on day 4, with a mean survival time of 13.5 ± 2.3 days vs. 8.4 ± 2.3 days of control. Also, FNDR-10132 displayed equivalent activity against the resistant strains of P. falciparum in the 200-300 nM range. This study offers a novel series of antimalarial compounds that could be developed into potent drugs against chloroquine-resistant malarial parasites through further chemistry and DMPK optimization.
Collapse
Affiliation(s)
| | - Vignesh Selvam
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| | | | - Renu Tripathi
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Prince Joshi
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Salique Hassan Shaham
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Mayas Singh
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| | | | - Saman Habib
- Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| |
Collapse
|
3
|
da Silva MA, Fokoue HH, Fialho SN, Dos Santos APDA, Rossi NRDLP, Gouveia ADJ, Ferreira AS, Passarini GM, Garay AFG, Alfonso JJ, Soares AM, Zanchi FB, Kato MJ, Teles CBG, Kuehn CC. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: an integrated approach in vitro and in silico. Parasitol Res 2021; 120:2199-2218. [PMID: 33963899 DOI: 10.1007/s00436-021-07169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 μM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 μM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 μM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.
Collapse
Affiliation(s)
- Minelly A da Silva
- Federal Institute of Education, Science and Technology of Rondônia - IFRO, Porto Velho, Rondônia, Brazil.
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil.
- Instituto Federal de Rondônia - Porto Velho-Calama, Av. Calama, 4985 - Flodoaldo Pontes Pinto, Porto Velho, RO, 76820-441, Brazil.
| | - Harold H Fokoue
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - Saara N Fialho
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | | | - Norton R D L P Rossi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | | | - Amália S Ferreira
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Guilherme M Passarini
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Ana F G Garay
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Jorge J Alfonso
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Andreimar M Soares
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Fernando B Zanchi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Massuo J Kato
- Institute of Chemistry, University of São Paulo - USP, São Paulo, Brazil
| | - Carolina B G Teles
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Christian C Kuehn
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
| |
Collapse
|
4
|
Cetin A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem Phys Lett 2021; 771:138563. [PMID: 33776065 PMCID: PMC7983322 DOI: 10.1016/j.cplett.2021.138563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
COVID-19, a new strain of coronavirus family, was identified at the end of 2019 in China. The COVID-19 virus spread rapidly all over the world. Scientists strive to find virus-specific antivirals for the treatment of COVID-19. The present study reports a molecular docking study of the stilbenolignans and SARS-CoV-2 main protease (SARS-CoV-2 Mpro) inhibitors. The detailed interactions between the stilbenolignan analogues and SARS-CoV-2 Mpro inhibitors were determined as hydrophobic bonds, hydrogen bonds and electronic bonds, inhibition activity, ligand efficiency, bonding type and distance and etc. The binding energies of the stilbenolignan analogues were obtained from the molecular docking of SARS-CoV-2 Mpro. Lehmbachol D, Maackolin, Gnetucleistol, Gnetifolin F, Gnetofuran A and Aiphanol were found to be -7.7, -8.2, -7.3, -8.5, -8.0 and -7.3 kcal/mol, respectively. Osirus, Molinspiration and SwissADME chemoinformatic tools were used to examine ADMET properties, pharmacokinetic parameters and toxicological characteristics of the stilbenolignan analogues. All analogues obey the Lipinski's rule of five. Furthermore, stilbenolignan analogues were studied to predict their binding affinities against SARS-CoV-2 Mpro using molecular modeling and simulation techniques, and the binding free energy calculations of all complexes were calculated using the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method. With the data presented here it has been observed that these analogues may be a good candidate for SARS-CoV-2 Mpro in vivo studies, so more research can be done on stilbenolignan analogues.
Collapse
|