1
|
Barzola FN, Laiolo J, Cotelo C, Joray MB, Volpini X, Rivero MR, Rópolo AS, Touz MC, Feliziani C. Cytotoxic effects of ivermectin on Giardia lamblia: induction of apoptosis and cell cycle arrest. Front Microbiol 2024; 15:1484805. [PMID: 39545240 PMCID: PMC11560887 DOI: 10.3389/fmicb.2024.1484805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Giardia lamblia is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents. Methods This study investigated the cytotoxic effects of ivermectin (IVM) on G. lamblia trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers. Results Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution. Discussion The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.
Collapse
Affiliation(s)
- Florencia Nicole Barzola
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica De Córdoba, Córdoba, Argentina
| | - Camilo Cotelo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Cientí-ficas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Ximena Volpini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología – Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - María Romina Rivero
- Instituto De Desarrollo Agroindustrial y De La Salud (IDAS-CONCIET), Universidad Nacional De Rio Cuarto, Rio Cuarto, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Hassan Abd Elhamid A, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Evaluation of muscular apoptotic changes and myogenin gene expression in experimental trichinosis after stem cells and atorvastatin added to ivermectin treatment. Exp Parasitol 2024; 265:108823. [PMID: 39187057 DOI: 10.1016/j.exppara.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/20/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Trichinosis is a common parasitic disease that affects the striated skeletal muscles, causing apoptotic and degenerative changes associated with myogenin expression in the affected myocytes. Hence, this study aimed to assess the ameliorative effects of stem cells and atorvastatin added to ivermectin on the infected myocytes during the muscular phase of murine trichinosis. 120 laboratory Swiss albino male mice were divided into 10 groups, and each group was subdivided into intestinal and muscular phases (each n = 6); uninfected control; untreated infected control; infected received ivermectin monotherapy; infected received atorvastatin monotherapy; infected received stem cells monotherapy; infected received ivermectin and atorvastatin dual therapy; infected received ivermectin and stem cells dual therapy; infected received atorvastatin and stem cells dual therapy; infected received ivermectin 0.2, atorvastatin 40, and stem cells triple therapy; and infected received ivermectin 0.1, atorvastatin 20, and stem cells triple therapy. Intestinal phase mice were sacrificed on the 5th day post-infection, while those of the muscular phase were sacrificed on the 35th day post-infection. Parasitological, histopathological, ultrastructural, histochemical, biochemical, and myogenin gene expression assessments were performed. The results revealed that mice that received ivermectin, atorvastatin, and stem cell triple therapies showed the maximum reduction in the adult worm and larvae burden, marked improvement in the underlying muscular degenerative changes (as was noticed by histopathological, ultrastructural, and histochemical Feulgen stain assessment), lower biochemical levels of serum NK-κB and tissue NO, and lower myogenin expression. Accordingly, the combination of stem cells, atorvastatin, and ivermectin affords a potential synergistic activity against trichinosis with considerable healing of the underlying degenerative sequel.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Parasitology, Benha National University (BNU), Qalyubia, Egypt.
| | - Samar El-Sayed
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Kareman M Zekry
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samah G Ahmed
- Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Doaa E A Salama
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Pathology, School of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Azza Kamal Taha
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Nihal A Mahmoud
- Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Mona M Amin
- Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Ayat M S Eraque
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shimaa A Mohamed
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ranya M Abdelgalil
- Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Nermeen Talaat Fahmy
- Molecular Biology and Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Elmehy DA, Gamea GA, El-Guindy DM, Tahoon DM, Elkholy RA, Zoghroban HS. Moxidectin versus Ivermectin in the prevention and treatment of acute and chronic experimental trichinellosis. Exp Parasitol 2024; 262:108775. [PMID: 38735518 DOI: 10.1016/j.exppara.2024.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The limited activity of the traditional medications against T. spiralis encysted larvae handicaps complete cure of trichinellosis till now due to decreased permeability and absorption through tissues. MOX is listed worldwide for prevention and treatment of several internal and external nematodes. Consequently, the aim of this work was to investigate the effect of moxidectin versus ivermectin on experimental acute and chronic trichinellosis and to illuminate the potential mechanisms of their effects. 105 Mice were divided into four groups; Group I: Uninfected healthy control; Group II: Infected untreated control; Group III: Infected and treated with IVM and Group IV: Infected and treated with MOX. The groups (II, III and IV) were later subdivided equally into three subgroups (a, b, and c) according to the stage of treatment. Parasitological counting of adults and larvae besides immune-histopathological examination of intestines and muscles were done. Results exhibited that both IVM and MOX succeeded in reducing adults and larvae counts with higher potential of MOX in both intestinal and muscle phase. The preeminence of MOX was indicated by decreased inflammation, a significant reduction in the microvascular density (CD31 immunostaining) as well as a reduction in the percentage of fibroblast activation protein (FAP) immunostaining in muscle tissues. Accordingly, the current work recommends moxidectin as an innovative treatment for trichinellosis.
Collapse
Affiliation(s)
- Dalia A Elmehy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Gamea
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M El-Guindy
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M Tahoon
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reem A Elkholy
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Pharmacology, School of Medicine, Badr University, Cairo, Egypt
| | - Hager S Zoghroban
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Ibrahim AF, Selim SM, Shafey DA, Sweed DM, Farag SA, Gouda MA. Appraisal of Chitosan-Coated Lipid Nano-Combination with Miltefosine and Albendazole in the Treatment of Murine Trichinellosis: Experimental Study with Evaluation of Immunological and Immunohistochemical Parameters. Acta Parasitol 2024; 69:929-950. [PMID: 38489009 PMCID: PMC11001732 DOI: 10.1007/s11686-024-00799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/03/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Resistance and adverse consequences of albendazole (ABZ) in treating trichinellosis urged demand for secure and effective new drugs. The current study aimed to assess the effect of chitosan-coated lipid nano-combination with albendazole and miltefosine (MFS) in treating experimental murine trichinellosis and evaluating pathological and immunological changes of trichinellosis. MATERIALS AND METHODS One hundred twenty Swiss albino mice were divided into six groups. Each group was subdivided into a and b subgroups based on the scarification time, which was 7- and 40-days post-infection (PI), respectively. The treatment efficacy was evaluated using parasitological, histopathological, serological (interleukin (IL)-12 and IL-4 serum levels), immunohistochemical (GATA3, glutathione peroxidase1 (GPX1) and caspase-3), and scanning electron microscopy (SEM) methods. RESULTS The most effective drug was nanostructured lipid carriers (NLCs) loaded with ABZ (G5), which showed the most significant reduction in adults and larval count (100% and 92.39%, respectively). The greatest amelioration in histopathological changes was reported in G4 treated with MFS. GATA3 and caspase-3 were significantly reduced in all treated groups. GPX1 was significantly increased in G6 treated with MFS + NLCs. The highest degenerative effects on adults and larvae by SEM were documented in G6. CONCLUSION Loading ABZ or MFS on chitosan-coated NLCs enhanced their efficacy against trichinellosis. Although ABZ was better than MFS, their combination should be considered as MFS caused a significant reduction in the intensity of infection. Furthermore, MFS showed anti-inflammatory (↓GATA3) and antiapoptotic effects (↓caspase-3), especially in the muscular phase. Also, when loaded with NLCS, it showed an antioxidant effect (↑GPX1).
Collapse
Affiliation(s)
- Asmaa F Ibrahim
- Clinical and Molecular Parasitology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, 32511, Menoufia Governorate, Egypt
| | - Sahar M Selim
- Clinical and Molecular Parasitology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, 32511, Menoufia Governorate, Egypt
| | - Dalia A Shafey
- Clinical and Molecular Parasitology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, 32511, Menoufia Governorate, Egypt
| | - Dina M Sweed
- Pathology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, Menoufia Governorate, Egypt
| | - Shaimaa A Farag
- Clinical and Molecular Parasitology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, 32511, Menoufia Governorate, Egypt.
| | - Marwa A Gouda
- Clinical and Molecular Parasitology Department, National Liver Institute, Medical Campus, Menoufia University, Melig Road, Shebin El-Kom, 32511, Menoufia Governorate, Egypt
| |
Collapse
|
5
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Abd-Elhamid AH, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Impact of atorvastatin and mesenchymal stem cells combined with ivermectin on murine trichinellosis. Parasitol Res 2023; 123:57. [PMID: 38105357 PMCID: PMC10725854 DOI: 10.1007/s00436-023-08077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Trichinellosis is one of the global food-borne parasitic diseases that can cause severe tissue damage. The traditionally used drugs for the treatment of trichinellosis have limited efficacy against the encysted larvae in the muscular phase of the disease. Therefore, this study aimed to evaluate the role of atorvastatin and mesenchymal stem cells combined with ivermectin against different phases of Trichinella in experimentally infected mice. A total of 120 male Swiss albino mice were divided into two major groups (n = 60 of each), intestinal and muscular phases. Then, each group was subdivided into 10 subgroups (n = 6); non-infected control, infected non-treated control, infected ivermectin treated, infected atorvastatin treated, infected mesenchymal stem cells treated, infected combined ivermectin and atorvastatin treated, infected combined mesenchymal stem cells and ivermectin treated, infected combined mesenchymal stem cells and atorvastatin treated, infected combined mesenchymal stem cells and a full dose of (ivermectin and atorvastatin) treated, and infected combined mesenchymal stem cells and half dose of (ivermectin and atorvastatin) treated. Mice were sacrificed at days 5 and 35 post-infection for the intestinal and muscular phases, respectively. The assessment was performed through many parameters, including counting the adult intestinal worms and muscular encysted larvae, besides histopathological examination of the underlying tissues. Moreover, a biochemical assay for the inflammatory and oxidative stress marker levels was conducted. In addition, levels of immunohistochemical CD31 and VEGF gene expression as markers of angiogenesis during the muscular phase were investigated. The combined mesenchymal stem cells and atorvastatin added to ivermectin showed the highest significant reduction in adult worms and encysted larvae counts, the most noticeable improvement of the histopathological changes, the most potent anti-inflammatory (lowest level of IL-17) and anti-angiogenic (lowest expression of CD31 and VEGF) activities, and also revealed the highly effective one to relieve the oxidative stress (lowest level of SOD, GSH, and lipid peroxidase enzymes). These observed outcomes indicate that adding mesenchymal stem cells and atorvastatin to ivermectin synergistically potentiates its therapeutic efficacy and provides a promising candidate against trichinellosis.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt.
| | - Samar El-Sayed
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Kareman M Zekry
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Samah Gouda Ahmed
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Asmaa Hassan Abd-Elhamid
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Doaa E A Salama
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Azza Kamal Taha
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Nihal A Mahmoud
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shaymaa Fathy Mohammed
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Rasha Elsayed Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ayat M S Eraque
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa A Mohamed
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Ranya M Abdelgalil
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Yosief Abbas Street, Cairo, Kairo, Egypt
| | - Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, 36VF+MJ2, Warraq Al Arab, El Warraq, Giza Governorate, 3863130, Egypt
| | - Nermeen Talaat Fahmy
- Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), 3 Emtedad Ramses, Al Abbaseyah Al Gharbeyah, El Weili, Cairo Governorate, 4435102, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| |
Collapse
|
7
|
Sulik M, Antoszczak M, Huczyński A, Steverding D. Antiparasitic activity of ivermectin: Four decades of research into a "wonder drug". Eur J Med Chem 2023; 261:115838. [PMID: 37793327 DOI: 10.1016/j.ejmech.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Parasitic diseases still pose a serious threat to human and animal health, particularly for millions of people and their livelihoods in low-income countries. Therefore, research into the development of effective antiparasitic drugs remains a priority. Ivermectin, a sixteen-membered macrocyclic lactone, exhibits a broad spectrum of antiparasitic activities, which, combined with its low toxicity, has allowed the drug to be widely used in the treatment of parasitic diseases affecting humans and animals. In addition to its licensed use against river blindness and strongyloidiasis in humans, and against roundworm and arthropod infestations in animals, ivermectin is also used "off-label" to treat many other worm-related parasitic diseases, particularly in domestic animals. In addition, several experimental studies indicate that ivermectin displays also potent activity against viruses, bacteria, protozoans, trematodes, and insects. This review article summarizes the last 40 years of research on the antiparasitic effects of ivermectin, and the use of the drug in the treatment of parasitic diseases in humans and animals.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland.
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
8
|
Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9933283. [PMID: 37621700 PMCID: PMC10447041 DOI: 10.1155/2023/9933283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Velho MC, Fontana de Andrade D, Beck RCR. Ivermectin: recent approaches in the design of novel veterinary and human medicines. Pharm Dev Technol 2022; 27:865-880. [PMID: 36062978 DOI: 10.1080/10837450.2022.2121840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Ivermectin (IVM) is a drug widely used in veterinary and human medicine for the management of parasitic diseases. Its repositioning potential has been recently considered for the treatment of different diseases, such as cancer and viral infections. However, IVM faces some limitations to its formulations due to its low water solubility and bioavailability, along with reports of drug resistance. In this sense, novel technological approaches have been explored to optimize its formulations and/or to develop innovative medicines. Therefore, this review discusses the strategies proposed in the last decade to improve the safety and efficacy of IVM and to explore its novel therapeutic applications. Among these technologies, the use of micro/nano-drug delivery systems is the most used approach, followed by long-acting formulations. In general, the development of these novel formulations seems to run side by side in veterinary and human health, showing a shared interface between the two areas. Although the technologies proposed indicate a promising future in the development of innovative dosage forms containing IVM, its safety and therapeutic targets must be further evaluated. Overall, these approaches comprise tailoring drug delivery profiles, decreasing the risks of developing drug resistance, and supporting the application of IVM for reaching different therapeutic targets.
Collapse
Affiliation(s)
- Maiara Callegaro Velho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| | - Diego Fontana de Andrade
- Departamento de Produção e Controle de Matéria-Prima, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| |
Collapse
|