1
|
Pramono AK, Hidayanti AK, Tagami Y, Ando H. Bacterial community and genome analysis of cytoplasmic incompatibility-inducing Wolbachia in American serpentine leafminer, Liriomyza trifolii. Front Microbiol 2024; 15:1304401. [PMID: 38380092 PMCID: PMC10877061 DOI: 10.3389/fmicb.2024.1304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Liriomyza trifolii, an agricultural pest, is occasionally infected by Wolbachia. A Wolbachia strain present in Liriomyza trifolii is associated with cytoplasmic incompatibility (CI) effects, leading to the death of embryos resulting from incompatible crosses between antibiotic-treated or naturally Wolbachia-free strain females and Wolbachia-infected males. In this study, high-throughput sequencing of hypervariable rRNA genes was employed to characterize the bacterial community in Wolbachia-infected L. trifolii without antibiotic treatment. The analysis revealed that Wolbachia dominates the bacterial community in L. trifolii, with minor presence of Acinetobacter, Pseudomonas, and Limnobacter. To elucidate the genetic basis of the CI phenotype, metagenomic sequencing was also conducted to assemble the genome of the Wolbachia strain. The draft-genome of the Wolbachia strain wLtri was 1.35 Mbp with 34% GC content and contained 1,487 predicted genes. Notably, within the wLtri genome, there are three distinct types of cytoplasmic incompatibility factor (cif) genes: Type I, Type III, and Type V cifA;B. These genes are likely responsible for inducing the strong cytoplasmic incompatibility observed in L. trifolii.
Collapse
Affiliation(s)
- Ajeng K. Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ardhiani K. Hidayanti
- School of Biological Environment, The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Yohsuke Tagami
- Laboratory of Applied Entomology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
3
|
Mateos-Hernández L, Maitre A, Abuin-Denis L, Obregon D, Martin E, Luis P, Maye J, Wu-Chuang A, Valiente Moro C, Cabezas-Cruz A. Hierarchical shift of the Aedes albopictus microbiota caused by antimicrobiota vaccine increases fecundity and egg-hatching rate in female mosquitoes. FEMS Microbiol Ecol 2023; 99:fiad140. [PMID: 37898556 DOI: 10.1093/femsec/fiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
Recent studies show that mosquito-microbiota interactions affects vector competence and fitness. We investigated if host antibodies modifying microbiota impact mosquito physiology. We focused on three prevalent bacteria (Acinetobacter, Pantoea, and Chryseobacterium), originally isolated from the Asian tiger mosquito Aedes albopictus. Our goal was to assess the impact of host antibodies on mosquito microbiota and life traits. Female mosquitoes were fed with blood from rabbits immunized with each bacterium or a mock vaccine. We compared various factors, including feeding behavior, survival rates, and reproductive success of the mosquitoes. Interestingly, mosquitoes fed with blood from a Chryseobacterium-immunized rabbit showed a significant increase in fecundity and egg-hatching rate. This outcome correlated with a decrease in the abundance of Chryseobacterium within the mosquito microbiota. While no significant changes were observed in the alpha and beta diversity indexes between the groups, our network analyses revealed an important finding. The antimicrobiota vaccines had a considerable impact on the bacterial community assembly. They reduced network robustness, and altered the hierarchical organization of nodes in the networks. Our findings provide the basis for the rational design of antimicrobiota vaccines to reduce mosquito fitness and potentially induce infection-refractory states in the microbiota to block pathogen transmission.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMETLRDE), Corte 20250, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte 20250, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes 92250, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| |
Collapse
|
4
|
Köchling K, Schaub GA, Werner D, Kampen H. Avian Plasmodium spp. and Haemoproteus spp. parasites in mosquitoes in Germany. Parasit Vectors 2023; 16:369. [PMID: 37853399 PMCID: PMC10585844 DOI: 10.1186/s13071-023-05965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Although haemosporidian parasites may cause considerable health and economic problems in aviaries, there is limited understanding of the vectors transmitting them. Mosquito-borne Plasmodium species are responsible for the deaths of numerous exotic (= immunologically naïve) birds in zoos every year, while native birds are adapted to the parasites and largely protected by an effective immune response. METHODS Mosquitoes were collected in bird/animal parks, wetlands and private gardens in various regions of Germany from 2020 to 2022. Females were pooled with up to 10 specimens according to taxon, location and date. Extracted DNA was screened for avian Haemosporida-specific mitochondrial rDNA using real-time polymerase chain reaction (PCR). Positive samples were amplified by a Plasmodium/Haemoproteus-specific nested PCR targeting the partial cytochrome b gene, followed by sequencing of the PCR product for species identification. Sequences were checked against GenBank and MalAvi databases. RESULTS PCR of 2633 pools with 8834 female mosquitoes signalled infection with Plasmodium in 46 pools and with Haemoproteus in one pool. Further amplification and sequencing demonstrated the occurrence of Haemoproteus majoris lineage PARUS1 (n = 1) as well as several Plasmodium species and lineages, including Plasmodium relictum SGS1 (n = 16) and GRW11 (n = 1), P. matutinum LINN1 (n = 13), P. vaughani SYAT05 (n = 10), P. circumflexum TURDUS01 (n = 3), P. cathemerium PADOM02 (n = 1) and Plasmodium sp. SYBOR02 (n = 1) and PLOPRI01 (n = 1). The infections were detected in Culex pipiens sensu lato (n = 40), Culiseta morsitans/fumipennis (n = 6) and Aedes cinereus/geminus (n = 1). CONCLUSIONS Although the overall Plasmodium minimum infection rate (5.2) appears to be low, the results demonstrated not only the ongoing circulation of Plasmodium parasites in the German mosquito population, but also the occurrence of eight distinct Plasmodium lineages, with three of them (PADOM02, SYBOR02, PLOPRI01) being detected in Germany for the first time. This study highlights the importance of conducting mosquito-borne pathogen surveillance studies simultaneously targeting vectors and vertebrate hosts, as certain species may be detected more readily in their vectors than in their vertebrate hosts, and vice versa.
Collapse
Affiliation(s)
- Katharina Köchling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany.
| | | | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
5
|
Andrade PS, Valença IN, Heinisch MRS, Rocha EC, Fernandes LN, Faria NR, Sabino EC, Lima-Camara TN. First Report of Wenzhou sobemo-like virus 4 in Aedes albopictus (Diptera: Culicidae) in Latin America. Viruses 2022; 14:2341. [PMID: 36366436 PMCID: PMC9696862 DOI: 10.3390/v14112341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.
Collapse
Affiliation(s)
- Pâmela S. Andrade
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ian N. Valença
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Marta R. S. Heinisch
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - Esmenia C. Rocha
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Lícia N. Fernandes
- Medical Research Laboratory 49, Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Tamara N. Lima-Camara
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|