1
|
Guzman-Chavez F, Arce A, Adhikari A, Vadhin S, Pedroza-Garcia JA, Gandini C, Ajioka JW, Molloy J, Sanchez-Nieto S, Varner JD, Federici F, Haseloff J. Constructing Cell-Free Expression Systems for Low-Cost Access. ACS Synth Biol 2022; 11:1114-1128. [PMID: 35259873 PMCID: PMC9098194 DOI: 10.1021/acssynbio.1c00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.
Collapse
Affiliation(s)
| | - Anibal Arce
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Abhinav Adhikari
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sandra Vadhin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jose Antonio Pedroza-Garcia
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Chiara Gandini
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Jim W. Ajioka
- Department
of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, U.K.
| | - Jenny Molloy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Sobeida Sanchez-Nieto
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Jeffrey D. Varner
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernan Federici
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Jim Haseloff
- Department
of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, U.K.
| |
Collapse
|
2
|
Park CK, Sanchez JL, Barahona C, Basantes LE, Sanchez J, Hernandez C, Horton NC. The run-on oligomer filament enzyme mechanism of SgrAI: Part 2. Kinetic modeling of the full DNA cleavage pathway. J Biol Chem 2018; 293:14599-14615. [PMID: 30054273 DOI: 10.1074/jbc.ra118.003682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/17/2018] [Indexed: 11/06/2022] Open
Abstract
Filament or run-on oligomer formation by enzymes is now recognized as a widespread phenomenon with potentially unique enzyme regulatory properties and biological roles. SgrAI is an allosteric type II restriction endonuclease that forms run-on oligomeric filaments with activated DNA cleavage activity and altered DNA sequence specificity. In this two-part work, we measure individual steps in the run-on oligomer filament mechanism to address specific questions of cooperativity, trapping, filament growth mechanisms, and sequestration of activity using fluorophore-labeled DNA, kinetic FRET measurements, and reaction modeling with global data fitting. The final models and rate constants show that the assembly step involving association of SgrAI-DNA complexes into the run-on oligomer filament is relatively slow (3-4 orders of magnitude slower than diffusion limited) and rate-limiting at low to moderate concentrations of SgrAI-DNA. The disassembly step involving dissociation of complexes of SgrAI-DNA from each other in the run-on oligomer filament is the next slowest step but is fast enough to limit the residence time of any one copy of SgrAI or DNA within the dynamic filament. Further, the rate constant for DNA cleavage is found to be 4 orders of magnitude faster in the run-on oligomer filament than in isolated SgrAI-DNA complexes and faster than dissociation of SgrAI-DNA complexes from the run-on oligomer filament, making the reaction efficient in that each association into the filament likely leads to DNA cleavage before filament dissociation.
Collapse
Affiliation(s)
- Chad K Park
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Jonathan L Sanchez
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Claudia Barahona
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - L Emilia Basantes
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Juan Sanchez
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Christian Hernandez
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - N C Horton
- From the Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
3
|
Albert P, Varga B, Zsibrita N, Kiss A. Circularly permuted variants of two CG-specific prokaryotic DNA methyltransferases. PLoS One 2018; 13:e0197232. [PMID: 29746549 PMCID: PMC5944983 DOI: 10.1371/journal.pone.0197232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/27/2018] [Indexed: 01/06/2023] Open
Abstract
The highly similar prokaryotic DNA (cytosine-5) methyltransferases (C5-MTases) M.MpeI and M.SssI share the specificity of eukaryotic C5-MTases (5'-CG), and can be useful research tools in the study of eukaryotic DNA methylation and epigenetic regulation. In an effort to improve the stability and solubility of complementing fragments of the two MTases, genes encoding circularly permuted (CP) variants of M.MpeI and M.SssI were created, and cloned in a plasmid vector downstream of an arabinose-inducible promoter. MTase activity of the CP variants was tested by digestion of the plasmids with methylation-sensitive restriction enzymes. Eleven of the fourteen M.MpeI permutants and six of the seven M.SssI permutants had detectable MTase activity as indicated by the full or partial protection of the plasmid carrying the cpMTase gene. Permutants cp62M.MpeI and cp58M.SssI, in which the new N-termini are located between conserved motifs II and III, had by far the highest activity. The activity of cp62M.MpeI was comparable to the activity of wild-type M.MpeI. Based on the location of the split sites, the permutants possessing MTase activity can be classified in ten types. Although most permutation sites were designed to fall outside of conserved motifs, and the MTase activity of the permutants measured in cell extracts was in most cases substantially lower than that of the wild-type enzyme, the high proportion of circular permutation topologies compatible with MTase activity is remarkable, and is a new evidence for the structural plasticity of C5-MTases. A computer search of the REBASE database identified putative C5-MTases with CP arrangement. Interestingly, all natural circularly permuted C5-MTases appear to represent only one of the ten types of permutation topology created in this work.
Collapse
Affiliation(s)
- Pál Albert
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bence Varga
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Nikolett Zsibrita
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Antal Kiss
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
4
|
Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 2017; 45:11479-11494. [PMID: 29040665 PMCID: PMC5714182 DOI: 10.1093/nar/gkx924] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.
Collapse
Affiliation(s)
- Jagoda Jablonska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
5
|
Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone. mBio 2015; 6:e01602-15. [PMID: 26578678 PMCID: PMC4659465 DOI: 10.1128/mbio.01602-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.
Collapse
|
6
|
A nucleotide insertion between two adjacent methyltransferases in Helicobacter pylori results in a bifunctional DNA methyltransferase. Biochem J 2011; 433:487-95. [PMID: 21110832 DOI: 10.1042/bj20101668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicobacter pylori has a dynamic R-M (restriction-modification) system. It is capable of acquiring new R-M systems from the environment in the form of DNA released from other bacteria or other H. pylori strains. Random mutations in R-M genes can result in non-functional R-M systems or R-M systems with new properties. hpyAVIAM and hpyAVIBM are two solitary DNA MTase (methyltransferase) genes adjacent to each other and lacking a cognate restriction enzyme gene in H. pylori strain 26695. Interestingly, in an Indian strain D27, hpyAVIAM-hpyAVIBM encodes a single bifunctional polypeptide due to insertion of a nucleotide just before the stop codon of hpyAVIBM and, when a similar mutation was made in hpyAVIAM-hpyAVIBM from strain 26695, a functional MTase with an N-terminal C⁵-cytosine MTase domain and a C-terminal N⁶-adenine MTase domain was constructed. Mutations in the AdoMet (S-adenosylmethionine)-binding motif or in the catalytic motif of M.HpyAVIA or M.HpyAVIB selectively abrogated the C⁵-cytosine or N⁶-adenine methylation activity of M.HpyAVIA-M.HpyAVIB fusion protein. The present study highlights the ability of H. pylori to evolve genes with unique functions and thus generate variability. For organisms such as H. pylori, which have a small genome, these adaptations could be important for their survival in the hostile host environment.
Collapse
|
7
|
Jakubauskas A, Kriukiene E, Trinkunaite L, Sapranauskas R, Jurenaite-Urbanaviciene S, Lubys A. Bioinformatic and partial functional analysis of pEspA and pEspB, two plasmids from Exiguobacterium arabatum sp. nov. RFL1109. Plasmid 2008; 61:52-64. [PMID: 18848579 DOI: 10.1016/j.plasmid.2008.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/28/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
The complete nucleotide sequences of two plasmids from Exiguobacterium arabatum sp. nov. RFL1109, pEspA (4563bp) and pEspB (38,945bp), have been determined. Five ORFs were identified in the pEspA plasmid, and putative functions were assigned to two of them. Using deletion mapping approach, the Rep-independent replication region of pEspA, which functions in Bacillus subtilis, was localized within a 0.6kb DNA region. Analysis of the pEspB sequence revealed 42 ORFs. From these, function of two genes encoding enzymes of the Lsp1109I restriction-modification system was confirmed experimentally, while putative functions of another 18 ORFs were suggested based on comparative analysis. Three functional regions have been proposed for the pEspB plasmid: the putative conjugative transfer region, the region involved in plasmid replication and maintenance, and the region responsible for transposition of the IS21 family-like transposable elements.
Collapse
|
8
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
9
|
Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 2007; 370:157-69. [PMID: 17499273 DOI: 10.1016/j.jmb.2007.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.
Collapse
|
10
|
Azarinskas A, Maneliene Z, Jakubauskas A. Hin4II, a new prototype restriction endonuclease from Haemophilus influenzae RFL4: Discovery, cloning and expression in Escherichia coli. J Biotechnol 2006; 123:288-96. [PMID: 16442652 DOI: 10.1016/j.jbiotec.2005.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/30/2005] [Accepted: 12/15/2005] [Indexed: 11/23/2022]
Abstract
The genes encoding restriction-modification system of unknown specificity Hin4II from Haemophilus influenzae RFL4 were cloned in Escherichia coli and sequenced. The Hin4II system comprises three tandemly arranged genes coding for m6A DNA methyltransferase, m5C DNA methyltransferase and restriction endonuclease, respectively. Restriction endonuclease was expressed in E. coli and purified to apparent homogeneity. The DNA recognition sequence and cleavage positions were determined. R.Hin4II recognizes the novel non-palindromic sequence 5'-CCTTC-3' and cleaves the DNA 6 and 5 nt downstream in the top and bottom strand, respectively. The new prototype restriction endonuclease Hin4II was classified as a potential candidate of HNH nuclease family after comparison against SMART database. An amino acid sequence motif 297H-X14-N-X8-H of Hin4II was proposed as forming a putative catalytic center.
Collapse
|
11
|
Sun J, Gunzer F, Westendorf AM, Buer J, Scharfe M, Jarek M, Gössling F, Blöcker H, Zeng AP. Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. J Biotechnol 2005; 117:147-61. [PMID: 15823404 DOI: 10.1016/j.jbiotec.2005.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/16/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.
Collapse
Affiliation(s)
- Jibin Sun
- GBF - German Research Centre for Biotechnology, Experimental Bioinformatics, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kriukiene E, Lubiene J, Lagunavicius A, Lubys A. MnlI—The member of H-N-H subtype of Type IIS restriction endonucleases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:194-204. [PMID: 16024301 DOI: 10.1016/j.bbapap.2005.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Bacteriophage lambda/genetics
- Catalysis
- Cations, Divalent/chemistry
- Chromatography, Gel
- Cloning, Molecular
- DNA Restriction-Modification Enzymes/genetics
- DNA Restriction-Modification Enzymes/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Moraxella/enzymology
- Moraxella/genetics
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames/genetics
- Protein Binding
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Substrate Specificity/genetics
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|
13
|
Raghavendra NK, Rao DN. Functional cooperation between exonucleases and endonucleases--basis for the evolution of restriction enzymes. Nucleic Acids Res 2003; 31:1888-96. [PMID: 12655005 PMCID: PMC152791 DOI: 10.1093/nar/gkg275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25-27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed.
Collapse
|