1
|
Singh G, Singh N, Ellur RK, Balamurugan A, Prakash G, Rathour R, Mondal KK, Bhowmick PK, Gopala Krishnan S, Nagarajan M, Seth R, Vinod KK, Singh V, Bollinedi H, Singh AK. Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding. Int J Mol Sci 2023; 24:16081. [PMID: 38003271 PMCID: PMC10671030 DOI: 10.3390/ijms242216081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 11/26/2023] Open
Abstract
Pusa Basmati 1509 (PB1509) is one of the major foreign-exchange-earning varieties of Basmati rice; it is semi-dwarf and early maturing with exceptional cooking quality and strong aroma. However, it is highly susceptible to various biotic stresses including bacterial blight and blast. Therefore, bacterial blight resistance genes, namely, xa13 + Xa21 and Xa38, and fungal blast resistance genes Pi9 + Pib and Pita were incorporated into the genetic background of recurrent parent (RP) PB1509 using donor parents, namely, Pusa Basmati 1718 (PB1718), Pusa 1927 (P1927), Pusa 1929 (P1929) and Tetep, respectively. Foreground selection was carried out with respective gene-linked markers, stringent phenotypic selection for recurrent parent phenotype, early generation background selection with Simple sequence repeat (SSR) markers, and background analysis at advanced generations with Rice Pan Genome Array comprising 80K SNPs. This has led to the development of Near isogenic lines (NILs), namely, Pusa 3037, Pusa 3054, Pusa 3060 and Pusa 3066 carrying genes xa13 + Xa21, Xa38, Pi9 + Pib and Pita with genomic similarity of 98.25%, 98.92%, 97.38% and 97.69%, respectively, as compared to the RP. Based on GGE-biplot analysis, Pusa 3037-1-44-3-164-20-249-2 carrying xa13 + Xa21, Pusa 3054-2-47-7-166-24-261-3 carrying Xa38, Pusa 3060-3-55-17-157-4-124-1 carrying Pi9 + Pib, and Pusa 3066-4-56-20-159-8-174-1 carrying Pita were identified to be relatively stable and better-performing individuals in the tested environments. Intercrossing between the best BC3F1s has led to the generation of Pusa 3122 (xa13 + Xa21 + Xa38), Pusa 3124 (Xa38 + Pi9 + Pib) and Pusa 3123 (Pi9 + Pib + Pita) with agronomy, grain and cooking quality parameters at par with PB1509. Cultivation of such improved varieties will help farmers reduce the cost of cultivation with decreased pesticide use and improve productivity with ensured safety to consumers.
Collapse
Affiliation(s)
- Gagandeep Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Niraj Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - G. Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - Rajeev Rathour
- Department of Agriculture Biotechnology, CSKHPKV, Palampur 176062, Himachal Pradesh, India
| | - Kalyan Kumar Mondal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (G.P.)
| | - Prolay Kumar Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Mariappan Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR-Indian Agricultural Research Institute, Aduthurai 612101, Tamil Nadu, India
| | - Rakesh Seth
- Regional Station, ICAR-Indian Agricultural Research Institute, Karnal 132001, Haryana, India;
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Varsha Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India (N.S.); (P.K.B.); (S.G.K.); (K.K.V.)
| |
Collapse
|
2
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|
3
|
Lin HH, Lin KH, Wu KF, Chen YC. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110849. [PMID: 33691955 DOI: 10.1016/j.plantsci.2021.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
IbACP, Ipomoea batatas anti-cancer peptide, a sixteen-amino-acid peptide isolated from sweet potato leaves, is capable of mediating a rapid alkalinization of growth media in plant suspension cells. However, the biological roles of IbACP as a defense peptide have not been studied. The objective of this study was to investigate the effect of IbACP on the accumulation of reactive oxygen species (ROS) and the expression of the defense-related genes. IbACP treatment of sweet potato leaves resulted in marked accumulation of both superoxide ion (O2-) and hydrogen peroxide (H2O2). The activity of peroxidase (POD) was significantly enhanced by IbACP treatment, suggesting that high levels of POD antioxidant activity may be used to scavenge the excess H2O2 in sweet potato plants. The IbACP-related genes were identified by suppression subtractive hybridization (SSH), and were then classified and assigned to the following categories: defense, development, metabolism, signaling, gene expression, and abiotic stress. H2O2 acts as a second messenger for gene activation in some of the IbACP-triggered gene expressions. These results demonstrated that IbACP is part of an integrated strategy for genetic regulation in sweet potato. Our work highlights the function of IbACP and its potential use for enhancing stress tolerance in sweet potato, in an effort to improve our understanding of defense-response mechanisms.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Fu Wu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan.
| |
Collapse
|
4
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
5
|
Zaka A, Grande G, Coronejo T, Quibod IL, Chen CW, Chang SJ, Szurek B, Arif M, Cruz CV, Oliva R. Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS One 2018; 13:e0203711. [PMID: 30212546 PMCID: PMC6136755 DOI: 10.1371/journal.pone.0203711] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023] Open
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the major diseases that impact rice production in Asia. The bacteria use transcription activator-like effectors (TALEs) to hijack the host transcription machinery and activate key susceptibility (S) genes, specifically members of the SWEET sucrose uniporters through the recognition of effector-binding element (EBEs) in the promoter regions. However, natural variations in the EBEs that alter the binding affinity of TALEs usually prevent sufficient induction of SWEET genes, leading to resistance phenotypes. In this study, we identified candidate resistance alleles by mining a rice diversity panel for mutations in the promoter of OsSWEET13 and OsSWEET14, which are direct targets of three major TALEs PthXo2, PthXo3 and AvrXa7. We found natural variations at the EBE of both genes, which appeared to have emerged independently in at least three rice subspecies. For OsSWEET13, a 2-bp deletion at the 5th and 6th positions of the EBE, and a substitution at the 17th position appear to be sufficient to prevent activation by PthXo2. Similarly, a single nucleotide substitution at position 10 compromised the induction of OsSWEET14 by AvrXa7. These findings might increase our opportunities to reduce pathogen virulence by preventing the induction of SWEET transporters. Pyramiding variants along with other resistance genes may provide durable and broad-spectrum resistance to the disease.
Collapse
Affiliation(s)
- Abha Zaka
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang road, Faisalabad, Punjab, Pakistan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Punjab, Pakistan
| | - Genelou Grande
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Thea Coronejo
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Ian Lorenzo Quibod
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Chun-Wei Chen
- Taiwan Agricultural Research Institute, Agricultural Research and Extension Station, Council of Agriculture, Guannan, Miaoli District, Taiwan
| | - Su-Jein Chang
- Taiwan Agricultural Research Institute, Agricultural Research and Extension Station, Council of Agriculture, Guannan, Miaoli District, Taiwan
| | - Boris Szurek
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Muhammad Arif
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang road, Faisalabad, Punjab, Pakistan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Punjab, Pakistan
| | - Casiana Vera Cruz
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Ricardo Oliva
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
6
|
Steane DA, Potts BM, McLean EH, Collins L, Holland BR, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biol Evol 2017; 9:253-265. [PMID: 28391293 PMCID: PMC5381606 DOI: 10.1093/gbe/evw290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Widespread species spanning strong environmental (e.g., climatic) gradients frequently display morphological and physiological adaptations to local conditions. Some adaptations are common to different species that occupy similar environments. However, the genomic architecture underlying such convergent traits may not be the same between species. Using genomic data from previous studies of three widespread eucalypt species that grow along rainfall gradients in southern Australia, our probabilistic approach provides evidence that adaptation to aridity is a genome-wide phenomenon, likely to involve multiple and diverse genes, gene families and regulatory regions that affect a multitude of complex genetic and biochemical processes.
Collapse
Affiliation(s)
- Dorothy A. Steane
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Land and Water, Wembley, Western Australia, Australia
| | - Brad M. Potts
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth H. McLean
- CSIRO Land and Water, Wembley, Western Australia, Australia
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| | - Lesley Collins
- Faculty of Health Science, Universal College of Learning, Palmerston North, New Zealand
| | - Barbara R. Holland
- School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - William D. Stock
- Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - René E. Vaillancourt
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| |
Collapse
|
7
|
Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis. BMC Genomics 2014; 15:1043. [PMID: 25433532 PMCID: PMC4302150 DOI: 10.1186/1471-2164-15-1043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
Background Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of cultivated apple. While a few scab resistance genes (R genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance, supposed to be more durable, are still unknown. This study aims to investigate the molecular mechanisms involved in the partial resistance of the old Belgian apple cultivar ‘Président Roulin’ against V. inaequalis. Results A global gene expression analysis was conducted in ‘Président Roulin’ (partially resistant) and in ‘Gala’ (susceptible) challenged by V. inaequalis by using the cDNA-AFLP method (cDNA-Amplified Fragment Length Polymorphism). Transcriptome analysis revealed significant modulation (up- or down-regulation) of 281 out of approximately 20,500 transcript derived fragments (TDFs) in ‘Président Roulin’ 48 hours after inoculation. Sequence annotation revealed similarities to several genes encoding for proteins belonging to the NBS-LRR and LRR-RLK classes of plant R genes and to other defense-related proteins. Differentially expressed genes were sorted into functional categories according to their gene ontology annotation and this expression signature was compared to published apple cDNA libraries by Gene Enrichment Analysis. The first comparison was made with two cDNA libraries from Malus x domestica uninfected leaves, and revealed in both libraries a signature of enhanced expression in ‘Président Roulin’ of genes involved in response to stress and photosynthesis. In the second comparison, the pathogen-responsive TDFs from the partially resistant cultivar were compared to the cDNA library from inoculated leaves of Rvi6 (HcrVf2)-transformed ‘Gala’ lines (complete disease resistance) and revealed both common physiological events, and notably differences in the regulation of defense response, the regulation of hydrolase activity, and response to DNA damage. TDFs were in silico mapped on the ‘Golden Delicious’ apple reference genome and significant co-localizations with major scab R genes, but not with quantitative trait loci (QTLs) for scab resistance nor resistance gene analogues (RGAs) were found. Conclusions This study highlights possible candidate genes that may play a role in the partial scab resistance mechanisms of ‘Président Roulin’ and increase our understanding of the molecular mechanisms involved in the partial resistance against apple scab. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1043) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Héloïse Bastiaanse
- Life Sciences Department, Breeding and Biodiversity Unit, Walloon Agricultural Research Center, Rue de Liroux, 4, 5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Li W, Shao M, Yang J, Zhong W, Okada K, Yamane H, Qian G, Liu F. Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:98-107. [PMID: 23602104 DOI: 10.1016/j.plantsci.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 05/21/2023]
Abstract
Bacterial blight is one of the most destructive rice diseases, which caused by Xoo, and results in yield losses, endangering worldwide food security. Diterpenoid phytoalexins, a type of antimicrobials produced in rice, are critical for resistance to fungal and bacterial pathogens. This article reports the characterization of the cytochrome P450 gene Oscyp71Z2, which belongs to the CYP71Z subfamily. Overexpression of Oscyp71Z2 in rice enhanced resistance to Xoo at the booting stage. The accumulation of phytoalexins was rapidly and strongly induced in Oscyp71Z2-overexpressing plants, and the transcript levels of genes related to the phytoalexin biosynthesis pathway were elevated. The H₂O₂ concentration in Oscyp71Z2-overexpressing plants was reduced in accordance with the increase in ROS-scavenging ability due to the induction of SOD as well as POD and CAT activation. We also showed that suppression of Oscyp71Z2 had no significantly effect on disease resistance to Xoo in rice. These results demonstrated that Oscyp71Z2 plays an important role in bacterial blight resistance by regulating the diterpenoid phytoalexin biosynthesis and H₂O₂ generation.
Collapse
Affiliation(s)
- Wenqi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Castiblanco LF, Gil J, Rojas A, Osorio D, Gutiérrez S, Muñoz-Bodnar A, Perez-Quintero AL, Koebnik R, Szurek B, López C, Restrepo S, Verdier V, Bernal AJ. TALE1 from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. MOLECULAR PLANT PATHOLOGY 2013; 14:84-95. [PMID: 22947214 PMCID: PMC6638846 DOI: 10.1111/j.1364-3703.2012.00830.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many plant-pathogenic bacteria suppress pathogen-associated molecular pattern (PAMP)-triggered immunity by injecting effector proteins into the host cytoplasm during infection through the type III secretion system (TTSS). This type III secretome plays an important role in bacterial pathogenicity in susceptible hosts. Xanthomonas axonopodis pv. manihotis (Xam), the causal agent of cassava bacterial blight, injects several effector proteins into the host cell, including TALE1(Xam) . This protein is a member of the Transcriptional Activator-Like effector (TALE) protein family, formerly known as the AvrBs3/PthA family. TALE1(Xam) has 13.5 tandem repeats of 34 amino acids each, as well as two nuclear localization signals and an acidic activation domain at the C-terminus. In this work, we demonstrate the importance of TALE1(Xam) in the pathogenicity of Xam. We use versions of the gene that lack different domains in the protein in structure-function studies to show that the eukaryotic domains at the 3' end are critical for pathogenicity. In addition, we demonstrate that, similar to the characterized TALE proteins from other Xanthomonas species, TALE1(Xam) acts as a transcriptional activator in plant cells. This is the first report of the identification of a TALE in Xam, and contributes to our understanding of the pathogenicity mechanisms employed by this bacterium to colonize and cause disease in cassava.
Collapse
Affiliation(s)
- Luisa F Castiblanco
- Departamento de Ciencias Biológicas, Laboratorio de Micología y Fitopatología, Universidad de Los Andes, Bogota, DC, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang H, Cao Y, Zhao J, Li X, Xiao J, Wang S. A pair of orthologs of a leucine-rich repeat receptor kinase-like disease resistance gene family regulates rice response to raised temperature. BMC PLANT BIOLOGY 2011; 11:160. [PMID: 22085497 PMCID: PMC3228767 DOI: 10.1186/1471-2229-11-160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/15/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice Xa3/Xa26 disease-resistance gene encodes a leucine-rich repeat (LRR) receptor kinase-type protein against Xanthomonas oryzae pv. oryzae (Xoo) and belongs to a multigene family. However, the functions of most genes in this family are unknown. RESULTS Here we report that two orthologs of this family, the NRKe from rice variety Nipponbare and 9RKe from variety 93-11 at the RKe locus, have similar functions although they encode different proteins. This pair of orthologs could not mediate resistance to Xoo, but they were transcriptionally induced by raised temperature. Transcriptional activation of NRKe or 9RKe resulted in the formation of temperature-sensitive lesion mimics, which were spots of dead cells associated with accumulation of superoxides, in different organs of the transgenic plants. These plants were more sensitive to high temperature shock than wild-type controls. Transgenic plants carrying a chimeric protein consisting of the LRR domain of NRKe and the kinase domain of Xa3/Xa26 developed the same lesion mimics as the NRKe-transgenic plants, whereas transgenic plants carrying another chimeric protein consisting of the LRR domain of Xa3/Xa26 and the kinase domain of NRKe were free of lesion mimic. All the transgenic plants carrying a chimeric protein were susceptible to Xoo. CONCLUSION These results suggest that the RKe locus is involved in rice response to raised temperature. The LRR domain of RKe protein appears to be important to sense increased temperature. The RKe-involved temperature-related pathway and Xa3/Xa26-mediated disease-resistance pathway may partially overlap.
Collapse
Affiliation(s)
- Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu J, Yonemaru JI, Sazuka T, Matsumoto T. Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:131-42. [PMID: 21442410 DOI: 10.1007/s00122-011-1572-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/11/2011] [Indexed: 05/09/2023]
Abstract
Target leaf spot is one of the major sorghum diseases in southern Japan and caused by a necrotrophic fungus, Bipolaris sorghicola. Sorghum resistance to target leaf spot is controlled by a single recessive gene (ds1). A high-density genetic map of the ds1 locus was constructed with simple sequence repeat markers using progeny from crosses between a sensitive variety, bmr-6, and a resistant one, SIL-05, which allowed the ds1 gene to be genetically located within a 26-kb region on the short arm of sorghum chromosome 5. The sorghum genome annotation database for BTx623, for which the whole genome sequence was recently published, indicated a candidate gene from the Leucine-Rich Repeat Receptor Kinase family in this region. The candidate protein kinase gene was expressed in susceptible plants but was not expressed or was severely reduced in resistant plants. The expression patterns of ds1 gene and the phenotype of target leaf spot resistance were clearly correlated. Genomic sequences of this region in parental varieties showed a deletion in the promoter region of SIL-05 that could cause reduction of gene expression. We also found two ds1 alleles for resistant phenotypes with a stop codon in the coding region. The results shown here strongly suggest that the loss of function or suppression of the ds1 protein kinase gene leads to resistance to target leaf spot in sorghum.
Collapse
|
12
|
Gan Q, Bai H, Zhao X, Tao Y, Zeng H, Han Y, Song W, Zhu L, Liu G. Transcriptional characteristics of Xa21-mediated defense responses in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:300-311. [PMID: 21324061 DOI: 10.1111/j.1744-7909.2011.01032.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most destructive bacterial disease of rice. The cloned rice gene Xa21 confers resistance to a broad spectrum of Xoo races. To identify genes involved in Xa21-mediated immunity, a whole-genome oligonucleotide microarray of rice was used to profile the expression of rice genes between incompatible interactions and mock treatments at 0, 4, 8, 24, 72 and 120 h post inoculation (hpi) or between incompatible and compatible interactions at 4 hpi, respectively. A total of 441 differentially expressed genes, designated as XDGs (Xa21 mediated differentially expressed genes), were identified. Based on their functional annotations, the XDGs were assigned to 14 categories, including defense-related, signaling, transcriptional regulators. Most of the defense-related genes belonged to the pathogenesis-related gene family, which was induced dramatically at 72 and 120 hpi. Interestingly, most signaling and transcriptional regulator genes were downregulated at 4 and 8 hpi, suggesting that negative regulation of cellular signaling may play a role in the Xa21-mediated defense response. Comparison of expression profiles between Xa21- and other R gene-mediated defense systems revealed interesting common responses. Representative XDGs with supporting evidences were also discussed.
Collapse
Affiliation(s)
- Qiang Gan
- Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen X, Yuan B, Liu H, Li X, Xu C, Wang S. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:86-99. [PMID: 20663089 DOI: 10.1111/j.1365-313x.2010.04306.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The pathogen-induced plant defense signaling network consists of multiple components, although only some of them are characterized. Most of the known components function either as activators or repressors in host-pathogen interactions. Here we report that a mitogen-activated protein kinase, OsMPK6, functions both as an activator and a repressor in rice resistance against Xanthomonas oryzae pv. oryzae (Xoo), the causal organism of bacterial blight disease. Activation of OsMPK6 resulted in the formation of lesion mimics and local resistance to Xoo, accompanied by the accumulation of salicylic acid (SA) and jasmonic acid (JA), and the induced expression of SA- and JA-signaling genes. Nuclear localization of OsMPK6 was essential for local resistance, suggesting that modulating the expression of defense-responsive genes through transcription regulators may be the primary mechanism of OsMPK6-mediated local resistance. The knock-out of OsMPK6 resulted in enhanced Xoo resistance, increased accumulation of SA and enhanced resistance to X. oryzae pv. oryzicola, the causal organism of bacterial streak disease, in systemic tissues. Xoo infection induced the expression of PR1a, the marker gene of systemic acquired resistance (SAR), in systemic health tissues of OsMPK6-knock-out plants. These results suggest that OsMPK6 negatively regulates SAR. Thus OsMPK6 is a two-faced player in the rice-Xoo interaction.
Collapse
Affiliation(s)
- Xiangling Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
14
|
Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. PLANT PHYSIOLOGY 2009; 151:936-48. [PMID: 19700558 PMCID: PMC2754648 DOI: 10.1104/pp.109.145623] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/18/2009] [Indexed: 05/17/2023]
Abstract
Although allelic diversity of genes has been reported to play important roles in different physiological processes, information on allelic diversity of defense-responsive genes in host-pathogen interactions is limited. Here, we report that a pair of allelic genes, OsWRKY45-1 and OsWRKY45-2, which encode proteins with a 10-amino acid difference, play opposite roles in rice (Oryza sativa) resistance against bacterial pathogens. Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo), bacterial streak caused by Xanthomonas oryzae pv oryzicola (Xoc), and fungal blast caused by Magnaporthe grisea are devastating diseases of rice worldwide. OsWRKY45-1-overexpressing plants showed increased susceptibility and OsWRKY45-1-knockout plants showed enhanced resistance to Xoo and Xoc. In contrast, OsWRKY45-2-overexpressing plants showed enhanced resistance and OsWRKY45-2-suppressing plants showed increased susceptibility to Xoo and Xoc. Interestingly, both OsWRKY45-1- and OsWRKY45-2-overexpressing plants showed enhanced resistance to M. grisea. OsWRKY45-1-regulated Xoo resistance was accompanied by increased accumulation of salicylic acid and jasmonic acid and induced expression of a subset of defense-responsive genes, while OsWRKY45-2-regulated Xoo resistance was accompanied by increased accumulation of jasmonic acid but not salicylic acid and induced expression of another subset of defense-responsive genes. These results suggest that both OsWRKY45-1 and OsWRKY45-2 are positive regulators in rice resistance against M. grisea, but the former is a negative regulator and the latter is a positive regulator in rice resistance against Xoo and Xoc. The opposite roles of the two allelic genes in rice-Xoo interaction appear to be due to their mediation of different defense signaling pathways.
Collapse
Affiliation(s)
- Zeng Tao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
15
|
White FF, Yang B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. PLANT PHYSIOLOGY 2009; 150:1677-86. [PMID: 19458115 PMCID: PMC2719118 DOI: 10.1104/pp.109.139360] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/17/2009] [Indexed: 05/19/2023]
Affiliation(s)
- Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
16
|
Zhao J, Fu J, Li X, Xu C, Wang S. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:231-9. [PMID: 19390838 DOI: 10.1007/s00122-009-1032-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 04/05/2009] [Indexed: 05/24/2023]
Abstract
Development-controlled resistance and resistance specificity frequently restrict the application of a disease resistance (R) gene in crop breeding programs. Xa3/Xa26 and Xa21, encoding leucine-rich repeat (LRR)-kinase type plasma membrane proteins, mediate race-specific resistance to Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, one of the most devastating rice diseases. Plants carrying Xa3/Xa26 and plants carrying Xa21 have different resistance spectra and the functions of the two R genes are regulated by developmental stage. Four chimeric genes encoding proteins consisting of different parts of XA3/XA26 and XA21 were constructed by domain swapping and transformed into a susceptible rice variety. The resistance spectra and development-regulated resistance of the transgenic plants carrying Xa3/Xa26, Xa21, or chimeric gene to different Xoo strains were analyzed in the same genetic background. The results suggest that the gradually increased expression of Xa3/Xa26 and Xa21 plays an important role in the progressively enhanced Xoo resistance during rice development. In addition, the LRR domains of XA3/XA26 and XA21 are important determinants of race-specific recognition during rice-Xoo interaction, but juxtamembrane regions of the two R proteins also appear to contribute to resistance specificity.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
17
|
Yuan M, Chu Z, Li X, Xu C, Wang S. Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. PLANT & CELL PHYSIOLOGY 2009; 50:947-55. [PMID: 19318375 DOI: 10.1093/pcp/pcp046] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The fully recessive disease resistance (R) gene xa13, which mediates race-specific resistance to Xanthomonas oryzae pv. oryzae (Xoo), encodes a plasma membrane protein that differs by one amino acid from that encoded by its dominant (susceptible) allele Xa13. The molecular mechanism of xa13-mediated resistance is largely unknown. Here we show that, compared with its dominant allele, expressional non-reaction of xa13 to Xoo infection, not its protein composition, is the key factor for xa13-mediated resistance. We used the promoter (P(Xa13)) of the dominant Xa13, which was induced by only the incompatible Xoo strain for xa13, to regulate xa13 and xa13(Leu49) (a natural recessive allele of xa13) in the rice line IRBB13 carrying xa13. The transgenic plants showed the same level of susceptibility and bacterial growth rate as those of the rice line carrying dominant Xa13, accompanied by the induced accumulation of xa13 or xa13(Leu49) proteins. Constitutive expression of dominant XA13 or different xa13 proteins (xa13, xa13(Leu49), xa13(Ala85) or xa13(Val184)) in IRBB13 had no effect on Xoo infection in the transgenic plants. These results suggest that race-specific pathogen-induced Xa13 expression is critical for infection. Thus, xa13 stands out from other R genes in that its functions in disease resistance are due to only the loss of pathogen-induced transcriptional motivation caused by natural selection.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | |
Collapse
|
18
|
Kou Y, Qiu D, Wang L, Li X, Wang S. Molecular analyses of the rice tubby-like protein gene family and their response to bacterial infection. PLANT CELL REPORTS 2009; 28:113-21. [PMID: 18818927 DOI: 10.1007/s00299-008-0620-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/05/2008] [Accepted: 09/12/2008] [Indexed: 05/15/2023]
Abstract
Tubby-like protein family has been identified in various multicellular organisms, indicating its fundamental functions in the organisms. However, the roles of plant tubby-like proteins are unknown. In this study, we have defined the tubby-like protein gene (OsTLP) family with 14 members in rice. Most of the OsTLPs harbor a tubby domain in their carboxyl terminus and an F-box domain in the amino terminus. The expression of all the OsTLPs was induced on infection of Xanthomonas oryzae pv. oryzae, which causes bacterial blight, one of the most devastating diseases of rice worldwide. The maximal expression levels were observed at 2-8 h after infection for all the genes. Eight of the 14 OsTLPs were also responsive to wounding. All the OsTLPs showed differential expression in different tissues at different developmental stages. However, four pairs of the 14 OsTLPs, with each pair having high sequence similarity and distributing on the similar position of different chromosomes, showed similar expression pattern in different tissues, indicating their direct relationship in evolution. These results suggest that the OsTLP family is involved in host-pathogen interaction and it may be also associated with other physiological and developmental activities.
Collapse
Affiliation(s)
- Yanjun Kou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | | | | | | | | |
Collapse
|
19
|
Hu KM, Qiu DY, Shen XL, Li XH, Wang SP. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. MOLECULAR PLANT 2008; 1:786-93. [PMID: 19825581 DOI: 10.1093/mp/ssn039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae and fungal blast caused by Magnaporthe grisea result in heavy production losses in rice, a main staple food for approximately 50% of the world's population. Application of host resistance to these pathogens is the most economical and environment-friendly approach to solve this problem. Quantitative trait loci (QTLs) controlling quantitative resistance are valuable sources for broad-spectrum and durable disease resistance. Although large numbers of QTLs for bacterial blight and blast resistance have been identified, these sources have not been used effectively in rice improvement because of the complex genetic control of quantitative resistance and because the genes underlying resistance QTLs are unknown. To isolate disease resistance QTLs, we established a candidate gene strategy that integrates linkage map, expression profile, and functional complementation analyses. This strategy has proven to be applicable for identifying the genes underlying minor resistance QTLs in rice-Xoo and rice-M. grisea systems and it may also help to shed light on disease resistance QTLs of other cereals. Our results also suggest that a single minor QTL can be used in rice improvement by modulating the expression of the gene underlying the QTL. Pyramiding two or three minor QTL genes, whose expression can be managed and that function in different defense signal transduction pathways, may allow the breeding of rice cultivars that are highly resistant to bacterial blight and blast.
Collapse
Affiliation(s)
- Ke-Ming Hu
- Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
20
|
Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y. Identification of early senescence-associated genes in rice flag leaves. PLANT MOLECULAR BIOLOGY 2008; 67:37-55. [PMID: 18330710 DOI: 10.1007/s11103-008-9300-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/16/2008] [Indexed: 05/07/2023]
Abstract
Leaf senescence is one of the key stages of plant leaf development. It is a highly complex but ordered process involving expression of large scale senescence associated genes, and its molecular mechanisms still remain unclear. By using suppression subtractive hybridization, 815 ESTs that are up-regulated at the onset of rice flag leaf senescence have been isolated. A total of 533 unigenes have been confirmed by macroarray detection and sequencing. 183 of these unigenes have GO annotations, involved in macromolecule metabolism, protein biosynthesis regulation, energy metabolism, gene expression regulations, detoxification, pathogenicity and stress, cytoskeleton organization and flower development. Another 121 unigenes co-localized with previously reported known stay-green QTLS. RT-PCR analysis on the other novel genes indicated that they can be up-regulated in natural early senescence and induced by hormone. Our results indicate that senescence is closely related to various metabolic pathways, thus providing new insight into the onset of leaf senescence mechanism.
Collapse
Affiliation(s)
- Li Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Freeman JS, Potts BM, Vaillancourt RE. Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics 2008; 178:563-71. [PMID: 18202395 PMCID: PMC2206102 DOI: 10.1534/genetics.107.081414] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
Foliar fungal pathogens from the genus Mycosphaerella affect eucalyptus in natural forests and plantations worldwide. QTL analysis was conducted to dissect the genetic control of resistance in Eucalyptus globulus to a natural infection by Mycosphaerella leaf disease, using a clonally replicated outbred F2 family (112 genotypes) planted in a field trial. Two major QTL, with high LOD support (20.2 and 10.9) and high genomewide significance, explained a large proportion (52%) of the phenotypic variance in the severity of damage by Mycosphaerella cryptica, which may be indicative of oligogenic control. Both QTL were validated in a second F2 family and one was validated in a third F2 family. The mean values of different genotype classes at both major QTL argue for Mendelian inheritance with resistance dominant over susceptibility. There were strong correlations between the levels of Mycosphaerella damage in related genetic material planted in three widely separated locations in Tasmania. These findings together provide evidence that the genes controlling resistance to Mycosphaerella damage are stable in different genetic backgrounds and across different environments.
Collapse
Affiliation(s)
- Jules S Freeman
- School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | | | |
Collapse
|
22
|
Hua H, Lu Q, Cai M, Xu C, Zhou DX, Li X, Zhang Q. Analysis of rice genes induced by striped stemborer (Chilo suppressalis) attack identified a promoter fragment highly specifically responsive to insect feeding. PLANT MOLECULAR BIOLOGY 2007; 65:519-30. [PMID: 17522952 DOI: 10.1007/s11103-007-9185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 05/05/2007] [Indexed: 05/15/2023]
Abstract
The objective of this study was to identify rice gene promoters that are specifically induced by feeding of the striped stemborer (Chilo suppressalis). Two PCR-selected cDNA subtractive libraries were constructed from the rice variety Minghui 63. Up- and down-regulated cDNAs induced by C. suppressalis feeding were arrayed on nylon membranes. After array hybridization and Northern blot analysis, a cDNA (B1-A04) encoding a putative subtilisin/chymotrypsin inhibitor was found to be rapidly and highly induced by C. suppressalis feeding, compared with mechanical wounding. The putative promoter region, spanning from -1,569 to +446 relative to the transcriptional initiation site was isolated, fused to the GUS gene (beta-glucuronidase reporter gene) and introduced by Agrobacterium-mediated transformation to rice. In non-infested plants, the GUS activity driven by this promoter fragment was detected in culms and panicles, but not in leaves and sheaths. At 6 h after insect feeding, GUS activity was significantly induced in sheaths and culms, but not in leaves. GUS activity and native B1-A04 gene were not induced by JA and ABA treatment. A serial deletion analysis revealed two regions (-1,569 to -1,166 and -1,166 to -582) that negatively regulate the gene expression in sheaths of non-infested plants but not in insect-infested plants. An electrophoretic mobility shift assay (EMSA) identified 7 DNA fragments with various binding activities with nuclear proteins from mechanically wounded, insect-infested and untreated plants, and their possible roles in gene regulation were speculated. This promoter fragment should have utility in development of insect resistant transgenic crops.
Collapse
Affiliation(s)
- Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Yuan B, Shen X, Li X, Xu C, Wang S. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. PLANTA 2007; 226:953-60. [PMID: 17541629 DOI: 10.1007/s00425-007-0541-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/26/2007] [Indexed: 05/15/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in diverse developmental and physiological processes of plants, including pathogen-induced defense responses. Although at least 17 rice MAPKs have been identified and more than half of these MAPK genes have been shown to be pathogen or elicitor responsive, the exact role of most of the MAPKs in host-pathogen interaction is unknown. Here we report that OsMPK6 is an important regulator in rice disease resistance. Suppressing OsMPK6 or knocking out of OsMPK6 enhanced rice resistance to different races of Xanthomonas oryzae pv. oryzae, causing bacterial blight, one of the most devastating diseases of rice worldwide. The resistant plants showed increased expression of a subset of defense-responsive genes functioning in the NH1 (an Arabidopsis NPR1 orthologue)-involved defense signal transduction pathway. These results suggest that OsMPK6 functions as a repressor to regulate rice defense responses upon bacterial invasion.
Collapse
Affiliation(s)
- Bin Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
24
|
Iyer-Pascuzzi AS, McCouch SR. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:731-9. [PMID: 17601161 DOI: 10.1094/mpmi-20-7-0731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Though recessive resistance is well-studied in viral systems, little is understood regarding the phenomenon in plant-bacterial interactions. The Oryza sativa-Xanthomonas oryzae pv. orzyae pathosystem provides an excellent opportunity to examine recessive resistance in plant-bacterial interactions, in which nine of 30 documented resistance (R) genes are recessively inherited. Infestations of X. oryzae pv. oryzae, the causal agent of bacterial blight, result in significant crop loss and damage throughout South and Southeast Asia. Two recently cloned novel recessive R genes, xa5 and xa13, have yielded insights to this system. Like their viral counterparts, these bacterial recessive R gene products do not conform to the five commonly described classes of R proteins. New findings suggest that such genes may more aptly be viewed as mutations in dominant susceptibility alleles and may also function in a gene-for-gene manner. In this review, we discuss recent accomplishments in the understanding of recessively inherited R genes in the rice-bacterial blight pathosystem and suggest a new model for the function of recessive resistance in plant-bacterial interactions.
Collapse
|
25
|
Vergne E, Ballini E, Marques S, Sidi Mammar B, Droc G, Gaillard S, Bourot S, DeRose R, Tharreau D, Nottéghem JL, Lebrun MH, Morel JB. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. THE NEW PHYTOLOGIST 2007; 174:159-171. [PMID: 17335506 DOI: 10.1111/j.1469-8137.2007.01971.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
* Our view of genes involved in rice disease resistance is far from complete. Here we used a gene-for-gene relationship corresponding to the interaction between atypical avirulence gene ACE1 from Magnaporthe grisea and rice resistance gene Pi33 to better characterize early rice defence responses induced during such interaction. * Rice genes differentially expressed during early stages of Pi33/ACE1 interaction were identified using DNA chip-based differential hybridization and QRT-PCR survey of the expression of known and putative regulators of disease resistance. * One hundred genes were identified as induced or repressed during rice defence response, 80% of which are novel, including resistance gene analogues. Pi33/ACE1 interaction also triggered the up-regulation of classical PR defence genes and a massive down-regulation of chlorophyll a/b binding genes. Most of these differentially expressed genes were induced or repressed earlier in Pi33/ACE1 interaction than in the gene-for-gene interaction involving Nipponbare resistant cultivar. * Besides demonstrating that an ACE1/Pi33 interaction induced classical and specific expression patterns, this work provides a list of new genes likely to be involved in rice disease resistance.
Collapse
Affiliation(s)
- E Vergne
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - E Ballini
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - S Marques
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - B Sidi Mammar
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - G Droc
- UMR PIA CIRAD TA40/03 Avenue Agropolis 34398 Montpellier Cedex 5, France
| | - S Gaillard
- UMR PIA CIRAD TA40/03 Avenue Agropolis 34398 Montpellier Cedex 5, France
| | - S Bourot
- Bayer BioScience NV, Technologiepark 38, B-9052 Zwijnaarde, Belgium
| | - R DeRose
- Bayer BioScience NV, Technologiepark 38, B-9052 Zwijnaarde, Belgium
| | - D Tharreau
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - J-L Nottéghem
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| | - M-H Lebrun
- UMR 2579 CNRS, BayerCropscience, 14-20 Rue Pierre Baizet BP 9163, 69263 Lyon Cedex 09, France
| | - J-B Morel
- UMR BGPI INRA/CIRAD/AgroM, Campus International de Baillarguet, T41/K 34398 Montpellier, France
| |
Collapse
|
26
|
Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 2006; 103:10503-10508. [PMID: 16798873 PMCID: PMC1502487 DOI: 10.1073/pnas.0604088103] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many bacterial diseases of plants depend on the interaction of type III effector genes of the pathogen and disease-susceptibility genes of the host. The host susceptibility genes are largely unknown. Here, we show that expression of the rice gene Os8N3, a member of the MtN3 gene family from plants and animals, is elevated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99(A) and depends on the type III effector gene pthXo1. Os8N3 resides near xa13, and PXO99(A) failed to induce Os8N3 in rice lines with xa13. Silencing of Os8N3 by inhibitory RNA produced plants that were resistant to infection by strain PXO99(A) yet remained susceptible to other strains of the pathogen. The effector gene avrXa7 from strain PXO86 enabled PXO99(A) compatibility on either xa13- or Os8N3-silenced plants. The findings indicate that Os8N3 is a host susceptibility gene for bacterial blight targeted by the type III effector PthXo1. The results support the hypothesis that X. oryzae pv. oryzae commandeers the regulation of otherwise developmentally regulated host genes to induce a state of disease susceptibility. Furthermore, the results support a model in which the pathogen induces disease susceptibility in a gene-for-gene manner.
Collapse
Affiliation(s)
- Bing Yang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Akiko Sugio
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
27
|
Ge X, Chu Z, Lin Y, Wang S. A tissue culture system for different germplasms of indica rice. PLANT CELL REPORTS 2006; 25:392-402. [PMID: 16432631 DOI: 10.1007/s00299-005-0100-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/28/2005] [Accepted: 11/20/2005] [Indexed: 05/06/2023]
Abstract
Agrobacterium-mediated transformation of indica rice has been manipulated in only a limited number of cultivars because the majority of indica varieties are recalcitrant to in vitro response. Establishment of a highly efficient and widely used tissue culture system for indica rice will accelerate the application of transformation technology in breeding programs and the study of the functions of indica-specific genes. By manipulating plant growth regulators, organic components and salts within the culture media, we established two media for callus induction and subculture, respectively, in tissue culture of indica rice. The modified media could guarantee the production and proliferation of a great number of embryogenic calli with high regeneration capacity from mature seeds representing different indica rice germplasms. The calli obtained from this system should be ideal material for Agrobacterium-mediated transformation. The results suggest that this optimized tissue culture system will be widely applicable for the tissue culture of indica varieties.
Collapse
Affiliation(s)
- Xiaojia Ge
- National Key Laboratory of Crop Genetic Improvement, National Center for Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | |
Collapse
|
28
|
Wang G, Ding X, Yuan M, Qiu D, Li X, Xu C, Wang S. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. PLANT MOLECULAR BIOLOGY 2006; 60:437-49. [PMID: 16514565 DOI: 10.1007/s11103-005-4770-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 11/03/2005] [Indexed: 05/06/2023]
Abstract
The function of OsDR8, a rice disease resistance-responsive gene, was studied. Silencing of OsDR8 using an RNA interference approach resulted in phenotypic alteration of the plants. The transgenic plants with repressed expression of OsDR8 showed reduced resistance or susceptibility to Xanthomonas oryzae pv. oryzae and Magnaporthe grisea causing bacterial blight and blast, which are two of the most devastating diseases in rice worldwide, respectively. The putative product of OsDR8 was highly homologous to an enzyme involved in the biosynthesis of the thiazole precursor of thiamine. Transgenic plants showing repressed expression of OsDR8 and reduced resistance had significantly lower levels of thiamine than the control plants. Exogenous application of thiamine could complement the compromised defense of the OsDR8-silenced plants. The expression level of several defense-responsive genes including the earlier functional genes of defense transduction pathway, OsPOX and OsPAL, and the downstream genes of the pathway, OsPR1a, OsPR1b, OsPR4, OsPR5 and OsPR10, was also decreased in the OsDR8-silenced plants. These results suggest that the impact of OsDR8 on disease resistance in rice may be through the regulation of expression of other defense-responsive genes and the site of OsDR8 function is on the upstream of the signal transduction pathway. In addition, the accumulation of thiamine may be essential for bacterial blight resistance and blast resistance.
Collapse
Affiliation(s)
- Gongnan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen JL, Zhang Q, Wang S. Targeting xa13, a recessive gene for bacterial blight resistance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:455-61. [PMID: 16328230 DOI: 10.1007/s00122-005-0145-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/23/2005] [Indexed: 05/04/2023]
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases of rice worldwide. Thirty bacterial blight resistance (R) genes (21 dominant genes and 9 recessive genes) in rice have been identified. They are the main sources for the genetic improvement of rice for resistance to Xoo. However, little is known about the recessive R genes. To clone and characterize the recessive R genes, we fine-mapped xa13, a fully recessive gene for Xoo resistance, to a DNA fragment of 14.8 kb using the map-based cloning strategy and a series of sequence-based molecular markers. Sequence analysis of this fragment indicated that this region contains only two apparently intact candidate genes (an extensin-like gene and a homologue of nodulin MtN3) and the 5' end of a predicted hypothetical gene. These results will greatly facilitate the isolation and characterization of xa13. Four PCR-based markers, E6a, SR6, ST9 and SR11 that were tightly linked to the xa13 locus, were also developed. These markers will be useful tools for the marker-assisted selection of xa13 in breeding programs.
Collapse
Affiliation(s)
- Zhaohui Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
McDowell JM, Williams SG, Funderburg NT, Eulgem T, Dangl JL. Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1226-34. [PMID: 16353557 DOI: 10.1094/mpmi-18-1226] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although developmentally regulated disease resistance has been observed in a variety of plant-pathogen interactions, the molecular basis of this phenomenon is not well understood. Arabidopsis thaliana ecotype Columbia-0 (Col-0) expresses a developmentally regulated resistance to Hyaloperonospora parasitica isolate Emco5. Col-0 seedlings support profuse mycelial growth and asexual spore formation in the cotyledons. In contrast, Emco5 growth and reproduction is dramatically (but not completely) restricted in the first set of true leaves. Subsequent leaves exhibit progresssively increased resistance. This adult resistance is strongly suppressed by expression of the salicylic acid-degrading transgene NahG and by loss-of-function mutations in the defense-response regulators PAD4, NDR1, RAR1, PBS3, and NPR1. In contrast to Col-0, the Wassilewskija-0 (Ws-0) ecotype supports profuse growth of Emco5 at all stages of development. Gene-dosage experiments and segregation patterns indicate that adult susceptibility in Ws-0 is incomepletely dominant to adult resistance in Col-0. Genetic mapping in a Col x Ws F2 population revealed a major locus on the bottom arm of chromosome 5, which we named RPP31. Analysis of T-DNA insertion lines indicated that the Columbia allele of RPP8, though tightly linked to RPP31, is not necessary for adult resistance.
Collapse
Affiliation(s)
- John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, and Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg 24061-0346, USA.
| | | | | | | | | |
Collapse
|