1
|
Tao X, Dou Y, Huang G, Sun M, Lu S, Chen D. α-Tubulin Regulates the Fate of Germline Stem Cells in Drosophila Testis. Sci Rep 2021; 11:10644. [PMID: 34017013 PMCID: PMC8138004 DOI: 10.1038/s41598-021-90116-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Drosophila testis provides an exemplary model for analyzing the extrinsic and intrinsic factors that regulate the fate of stem cell in vivo. Using this model, we show that the Drosophila αTub67C gene (full name αTubulin at 67C), which encodes α4-Tubulin (a type of α-Tubulin), plays a new role in controlling the fate of male germline stem cells (GSC). In this study, we have found that Drosophila α4-Tubulin is required intrinsically and extrinsically for GSCs maintenance. Results from green fluorescent protein (GFP)-transgene reporter assays show that the gene αTub67C is not required for Dpp/Gbb signaling silencing of bam expression, suggesting that αTub67C functions downstream of or parallel to bam, and is independent of Gbb/Dpp-bam signaling pathway. Furthermore, overexpression of αTub67C fails to obviously increase the number of GSC/Gonialblast (GB). Given that the α-tubulin genes are evolutionarily conserved from yeast to human, which triggers us to study the more roles of the gene α-tubulin in other animals in the future.
Collapse
Affiliation(s)
- Xiaoqian Tao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunqiao Dou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Guangyu Huang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Mingzhong Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,College of Life Sciences, The Institute of Bioinformatics, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
2
|
Fahmy K, Akber M, Cai X, Koul A, Hayder A, Baumgartner S. αTubulin 67C and Ncd are essential for establishing a cortical microtubular network and formation of the Bicoid mRNA gradient in Drosophila. PLoS One 2014; 9:e112053. [PMID: 25390693 DOI: 10.1371/journal.pone.0112053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. To explain the generation of the gradient, the ARTS model, which is based on the observation of a bcd mRNA gradient, proposes that the bcd mRNA, localized at the anterior pole at fertilization, migrates along microtubules (MTs) at the cortex to the posterior to form a bcd mRNA gradient which is translated to form a protein gradient. To fulfil the criteria of the ARTS model, an early cortical MT network is thus a prerequisite. We report hitherto undiscovered MT activities in the early embryo important for bcd mRNA transport: (i) an early and omnidirectional MT network exclusively at the anterior cortex of early nuclear cycle embryos showing activity during metaphase and anaphase only, (ii) long MTs up to 50 µm extending into the yolk at blastoderm stage to enable basal-apical transport. The cortical MT network is not anchored to the actin cytoskeleton. The posterior transport of the mRNA via the cortical MT network critically depends on maternally-expressed αTubulin67C and the minus-end motor Ncd. In either mutant, cortical transport of the bcd mRNA does not take place and the mRNA migrates along another yet undisclosed interior MT network, instead. Our data strongly corroborate the ARTS model and explain the occurrence of the bcd mRNA gradient.
Collapse
Affiliation(s)
- Khalid Fahmy
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Mira Akber
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Xiaoli Cai
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Aabid Koul
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Awais Hayder
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Zhang J, Zhang C, Cheng Y, Qi L, Wang S, Hou X. Microtubule and male sterility in a gene-cytoplasmic male sterile line of non-heading Chinese cabbage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:3046-3054. [PMID: 22581783 DOI: 10.1002/jsfa.5722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 12/17/2011] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Microtubules are the basic components of the cytoskeleton in eukaryotic cells and are made up of 13 parallel protofilaments, each composed of α- and β-tubulin unit molecules aligned along the longitudinal axis of the microtubule. RESULTS α-Tubulin gene TUBA2 from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) was expressed at the highest level in stamens and at lower levels in other organs. In addition, it was expressed at a much lower level in the cytoplasmic male sterile (CMS) line than in the maintainer line. Furthermore, at the microsporocyte stage of development in the CMS line the microtubule bundles were knitted together in random organisation, which differed significantly from the radiate microtubule bundles running circumferentially around the nucleus in the maintainer line. Also, large vacuoles appeared within the cytoplasm in the CMS line with no dyed microtubules. CONCLUSION TUBA2 was very important to pollen development, which might be closely related to male sterility. Large vacuoles might replace the nuclei close to the cell walls and lead to a lack of microtubules when the cells abort. Abnormalities and defects in the organisation and composition of microtubules in the male sterile line highlighted the complex interaction between microtubules and cytoplasmic male sterility.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | |
Collapse
|
4
|
Gaspar I, Szabad J. Glu415 in the alpha-tubulins plays a key role in stabilizing the microtubule-ADP-kinesin complexes. J Cell Sci 2009; 122:2857-65. [PMID: 19622631 DOI: 10.1242/jcs.050252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kavar(21g), a dominant female-sterile mutation of Drosophila, identifies the alphaTubulin67C gene that encodes alpha4-tubulin, the maternally provided alpha-tubulin isoform. Although alpha4-tubulin is synthesized during oogenesis, its function is required only in the early cleavage embryos. However, once present in the developing oocyte, much of the alpha4-tubulin and the Kavar(21g)-encoded E426K-alpha4-tubulin molecules become incorporated into the microtubules. We analyzed ooplasmic streaming and lipid-droplet transport, with confocal reflection microscopy, in the developing egg primordia in the presence and absence of alpha4-tubulin and E426K-alpha4-tubulin and learnt that the E426K-alpha4-tubulin molecules eliminate ooplasmic streaming and alter lipid-droplet transport. Apparently, Glu426 is involved in stabilization of the microtubule-kinesin complexes when the kinesins are in the most labile, ADP-bound state. Replacement of Glu426 by Lys results in frequent detachments of the kinesins from the microtubules leading to reduced transport efficiency and death of the embryos derived from the Kavar(21g)-carrying females. Glu426 is a component of the twelfth alpha-helix, which is the landing and binding platform for the mechanoenzymes. Since the twelfth alpha-helix is highly conserved in the alpha-tubulin family, Glu415, which corresponds to Glu426 in the constitutively expressed alpha-tubulins, seems be a key component of microtubule-kinesin interaction and thus the microtubule-based transport.
Collapse
Affiliation(s)
- Imre Gaspar
- University of Szeged, Faculty of Medicine, Department of Biology, Szeged, Hungary
| | | |
Collapse
|
6
|
Loewe L, Charlesworth B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett 2007; 2:426-30. [PMID: 17148422 PMCID: PMC1686194 DOI: 10.1098/rsbl.2006.0481] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The properties of the distribution of deleterious mutational effects on fitness (DDME) are of fundamental importance for evolutionary genetics. Since it is extremely difficult to determine the nature of this distribution, several methods using various assumptions about the DDME have been developed, for the purpose of parameter estimation. We apply a newly developed method to DNA sequence polymorphism data from two Drosophila species and compare estimates of the parameters of the distribution of the heterozygous fitness effects of amino acid mutations for several different distribution functions. The results exclude normal and gamma distributions, since these predict too few effectively lethal mutations and power-law distributions as a result of predicting too many lethals. Only the lognormal distribution appears to fit both the diversity data and the frequency of lethals. This DDME arises naturally in complex systems when independent factors contribute multiplicatively to an increase in fitness-reducing damage. Several important parameters, such as the fraction of effectively neutral non-synonymous mutations and the harmonic mean of non-neutral selection coefficients, are robust to the form of the DDME. Our results suggest that the majority of non-synonymous mutations in Drosophila are under effective purifying selection.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
7
|
Venkei Z, Gáspár I, Tóth G, Szabad J. α4-Tubulin is involved in rapid formation of long microtubules to push apart the daughter centrosomes during earlyxDrosophilaembryogenesis. J Cell Sci 2006; 119:3238-48. [PMID: 16847053 DOI: 10.1242/jcs.03039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although α4-tubulin comprises only about one-fifth of the α-tubulin pool in every Drosophila egg, in the absence of α4-tubulin - in eggs of the kavar0/- hemizygous females - only a tassel of short microtubules forms with two barely separated daughter centrosomes. We report that α4-tubulin is enriched in the long microtubules that embrace the nuclear envelope and suggest that they push apart daughter centrosomes along the nuclear perimeter during the initial cleavage divisions. In vitro tubulin polymerization showed that α4-tubulin is required for rapid tubulin polymerization. Since tubulin polymerization is slow inside eggs of the kavar0/- females, only short microtubules can form within the 4 to 5 minutes allowed for the process. A tassel of short microtubules with two barely separated centrosomes forms in every egg of the Kavar18c/+ females, in which the cytoplasm contains both wild-type and Kavar18c-encoded α4-tubulin with an E82K amino acid substitution (E82K-α4-tubulin). E82K-α4-tubulin is incorporated into the microtubules and renders them unstable. When injected into wild-type early cleavage embryos E82K-α4-tubulin slows down the formation of long microtubules and the separation of the daughter centrosomes. Surprisingly, when injected into late cleavage embryos E82K-α4-tubulin is non-toxic. Similarly, in the neuroblasts, ectopically expressed E82K-α4-tubulin becomes incorporated into the microtubules that grow sufficiently long and function normally.
Collapse
Affiliation(s)
- Zsolt Venkei
- Maternal Effect and Embryogenesis Research Group of the Hungarian Academy of Sciences at the University of Szeged, Faculty of Medicine, Department of Biology, Somogyi B. u. 4, H-6720 Szeged, Hungary
| | | | | | | |
Collapse
|