1
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
2
|
Hu Y, Liu Z, Xu S, Zhao Q, Liu G, Song X, Qu Y, Qin Y. The interaction between the histone acetyltransferase complex Hat1-Hat2 and transcription factor AmyR provides a molecular brake to regulate amylase gene expression. Mol Microbiol 2023; 119:471-491. [PMID: 36760021 DOI: 10.1111/mmi.15036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.
Collapse
Affiliation(s)
- Yueyan Hu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,Shandong Lishan Biotechnology Co., Ltd, Jinan, China
| | - Zhongjiao Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shaohua Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qinqin Zhao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Zhang X, Hu Y, Liu G, Liu M, Li Z, Zhao J, Song X, Zhong Y, Qu Y, Wang L, Qin Y. The complex Tup1-Cyc8 bridges transcription factor ClrB and putative histone methyltransferase LaeA to activate the expression of cellulolytic genes. Mol Microbiol 2022; 117:1002-1022. [PMID: 35072962 DOI: 10.1111/mmi.14885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhonghai Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Leydon AR, Wang W, Gala HP, Gilmour S, Juarez-Solis S, Zahler ML, Zemke JE, Zheng N, Nemhauser JL. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. eLife 2021; 10:66739. [PMID: 34075876 PMCID: PMC8203292 DOI: 10.7554/elife.66739] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
The plant corepressor TOPLESS (TPL) is recruited to a large number of loci that are selectively induced in response to developmental or environmental cues, yet the mechanisms by which it inhibits expression in the absence of these stimuli are poorly understood. Previously, we had used the N-terminus of Arabidopsis thaliana TPL to enable repression of a synthetic auxin response circuit in Saccharomyces cerevisiae (yeast). Here, we leveraged the yeast system to interrogate the relationship between TPL structure and function, specifically scanning for repression domains. We identified a potent repression domain in Helix 8 located within the CRA domain, which directly interacted with the Mediator middle module subunits Med21 and Med10. Interactions between TPL and Mediator were required to fully repress transcription in both yeast and plants. In contrast, we found that multimer formation, a conserved feature of many corepressors, had minimal influence on the repression strength of TPL.
Collapse
Affiliation(s)
| | - Wei Wang
- Department of Pharmacology, Seattle, United States
| | - Hardik P Gala
- Department of Biology, University of Washington, Seattle, United States
| | - Sabrina Gilmour
- Department of Biology, University of Washington, Seattle, United States
| | | | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, United States
| | - Joseph E Zemke
- Department of Biology, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | | |
Collapse
|
5
|
Maji S, Dahiya P, Waseem M, Dwivedi N, Bhat DS, Dar TH, Thakur JK. Interaction map of Arabidopsis Mediator complex expounding its topology. Nucleic Acids Res 2019; 47:3904-3920. [PMID: 30793213 PMCID: PMC6486561 DOI: 10.1093/nar/gkz122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Understanding of mechanistic details of Mediator functioning in plants is impeded as the knowledge of subunit organization and structure is lacking. In this study, an interaction map of Arabidopsis Mediator complex was analyzed to understand the arrangement of the subunits in the core part of the complex. Combining this interaction map with homology-based modeling, probable structural topology of core part of the Arabidopsis Mediator complex was deduced. Though the overall topology of the complex was similar to that of yeast, several differences were observed. Many interactions discovered in this study are not yet reported in other systems. AtMed14 and AtMed17 emerged as the key component providing important scaffold for the whole complex. AtMed6 and AtMed10 were found to be important for linking head with middle and middle with tail, respectively. Some Mediator subunits were found to form homodimers and some were found to possess transactivation property. Subcellular localization suggested that many of the Mediator subunits might have functions beyond the process of transcription. Overall, this study reveals role of individual subunits in the organization of the core complex, which can be an important resource for understanding the molecular mechanism of functioning of Mediator complex and its subunits in plants.
Collapse
Affiliation(s)
- Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Waseem
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Divya S Bhat
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanvir H Dar
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Nozawa K, Schneider TR, Cramer P. Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 2017; 545:248-251. [PMID: 28467824 DOI: 10.1038/nature22328] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 01/07/2023]
Abstract
Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.
Collapse
Affiliation(s)
- Kayo Nozawa
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Thomas R Schneider
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:106-18. [PMID: 26172375 DOI: 10.1111/jipb.12377] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/07/2015] [Indexed: 05/08/2023]
Abstract
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
8
|
MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 2015; 5:3064. [PMID: 24451981 DOI: 10.1038/ncomms4064] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
Mediator is an evolutionarily conserved transcriptional regulatory complex. Mechanisms of Mediator function are poorly understood. Here we show that Arabidopsis MED18 is a multifunctional protein regulating plant immunity, flowering time and responses to hormones through interactions with distinct transcription factors. MED18 interacts with YIN YANG1 to suppress disease susceptibility genes glutaredoxins GRX480, GRXS13 and thioredoxin TRX-h5. Consequently, yy1 and med18 mutants exhibit deregulated expression of these genes and enhanced susceptibility to fungal infection. In addition, MED18 interacts with ABA INSENSITIVE 4 and SUPPRESSOR OF FRIGIDA4 to regulate abscisic acid responses and flowering time, respectively. MED18 associates with the promoter, coding and terminator regions of target genes suggesting its function in transcription initiation, elongation and termination. Notably, RNA polymerase II occupancy and histone H3 lysine tri-methylation of target genes are affected in the med18 mutant, reinforcing MED18 function in different mechanisms of transcriptional control. Overall, MED18 conveys distinct cues to engender transcription underpinning plant responses.
Collapse
|
9
|
Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. BMC PLANT BIOLOGY 2015; 15:252. [PMID: 26490733 PMCID: PMC4618151 DOI: 10.1186/s12870-015-0614-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/13/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2. METHODS We used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR). RESULTS The tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea. CONCLUSION VIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways.
Collapse
Affiliation(s)
- Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Li W, Yoshida A, Takahashi M, Maekawa M, Kojima M, Sakakibara H, Kyozuka J. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:282-291. [PMID: 25404280 DOI: 10.1111/tpj.12725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 05/28/2023]
Abstract
The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group of plant hormones that inhibits shoot branching. We isolated a recessive mutant named super apical dormant (sad1-1) from a suppressor screen of d14-1. The growth of tillers (vegetative shoot branches) is suppressed in both the d14-1 sad1-1 double mutant and the sad1-1 single mutant. In addition, the sad1-1 mutant shows pleiotropic defects throughout development. SAD1 encodes an ortholog of RPA34.5, a subunit of RNA polymerase I (Pol I). Consequently, the level of ribosomal RNA (rRNA) is severely reduced in the sad1-1 mutant. These results indicate that proper ribosome function is a prerequisite for normal development in plants. The Arabidopsis ortholog of SAD1 was previously isolated as a Mediator-interacting protein. Here we show that SAD1 interacts physically with the Mediator complex through direct binding with OsMED4, a component of the middle module of the Mediator complex in rice. It is known that Mediator interacts with Pol II, which transcribes mRNAs and functions as a central regulator of transcription. This study indicates a novel aspect of Mediator function in Pol I-controlled rRNA transcription. TFIIF2 and RPC53 are the counterparts of RPA34.5 in Pol II and Pol III, respectively. We demonstrate that the rice orthologs of these proteins also interact with OsMED4. Our results suggest that interaction with MED4 in the Mediator complex is a common feature of the three types of RNA polymerases.
Collapse
Affiliation(s)
- Weiqiang Li
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 2014; 157:1430-1444. [PMID: 24882805 DOI: 10.1016/j.cell.2014.05.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 05/10/2014] [Indexed: 11/16/2022]
Abstract
The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism.
Collapse
Affiliation(s)
- Kuang-Lei Tsai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeo Sato
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry & Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Francisco J Asturias
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
13
|
Abstract
How is specificity transmitted over long distances at the molecular level? REs (regulatory elements) are often far from transcription start sites. In the present review we discuss possible mechanisms to explain how information from specific REs is conveyed to the basal transcription machinery through TFs (transcription factors) and the Mediator complex. We hypothesize that this occurs through allosteric pathways: binding of a TF to a RE results in changes in the AD (activation domain) of the TF, which binds to Mediator and alters the distribution of the Mediator conformations, thereby affecting transcription initiation/activation. We argue that Mediator is formed by highly disordered proteins with large densely packed interfaces that make efficient long-range signal propagation possible. We suggest two possible general mechanisms for Mediator action: one in which Mediator influences PIC (pre-initiation complex) assembly and transcription initiation, and another in which Mediator exerts its effect on the already assembled but stalled transcription complex. We summarize (i) relevant information from the literature about Mediator composition, organization and structure; (ii) Mediator interaction partners and their effect on Mediator conformation, function and correlation to the RNA Pol II (polymerase II) CTD (C-terminal domain) phosphorylation; and (iii) propose that different allosteric signal propagation pathways in Mediator relate to PIC assembly and polymerase activation of the stalled transcription complex. The emerging picture provides for the first time a mechanistic view of allosteric signalling from the RE sequence to transcription activation, and an insight into how gene specificity and signal transmission can take place in transcription initiation.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Takahata S, Yu Y, Stillman DJ. Repressive chromatin affects factor binding at yeast HO (homothallic switching) promoter. J Biol Chem 2011; 286:34809-19. [PMID: 21840992 DOI: 10.1074/jbc.m111.281626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast HO gene is tightly regulated, with multiple activators and coactivators needed to overcome repressive chromatin structures that form over this promoter. Coactivator binding is strongly interdependent, as loss of one factor sharply reduces recruitment of other factors. The Rpd3(L) histone deacetylase is recruited to HO at two distinct times during the cell cycle, first by Ash1 to the URS1 region of the promoter and then by SBF/Whi5/Stb1 to URS2. SBF itself is localized to only a subset of its potential binding sites in URS2, and this localization takes longer and is less robust than at other SBF target genes, suggesting that binding to the HO promoter is limited by chromatin structures that dynamically change as the cell cycle progresses. Ash1 only binds at the URS1 region of the promoter, but an ash1 mutation results in markedly increased binding of SBF and Rpd3(L) at URS2, some 450 bp distant from the site of Ash1 binding, suggesting these two regions of the promoter interact. An ash1 mutation also results in increased coactivator recruitment, Swi/Snf and Mediator localization in the absence of the normally required Gcn5 histone acetyltransferase, and HO expression even in the presence of a taf1 mutation affecting TFIID activity that otherwise blocks HO transcription. Ash1 therefore appears to play a central role in generating the strongly repressive environment at the HO promoter, which limits the binding of several coactivators at URS2 and TATA region.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
15
|
Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Mittelsten Scheid O, Mengiste T. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. THE PLANT CELL 2009; 21:1000-19. [PMID: 19286969 PMCID: PMC2671699 DOI: 10.1105/tpc.108.062364] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 02/11/2009] [Accepted: 02/26/2009] [Indexed: 05/17/2023]
Abstract
This work examines the role of the Arabidopsis thaliana RING E3 ligase, HISTONE MONOUBIQUITINATION1 (HUB1) in disease resistance. Loss-of-function alleles of HUB1 show increased susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, whereas HUB1 overexpression conferred resistance to B. cinerea. By contrast, responses to the bacterial pathogen Pseudomonas syringae are unaltered in hub1 plants. hub1 mutants have thinner cell walls but increased callose around an infection site. HUB1 acts independently of jasmonate, but ethylene (ET) responses and salicylate modulate the resistance of hub1 mutants to necrotrophic fungi. The ET response factor ETHYLENE INSENSITIVE2 is epistatic to HUB1 for A. brassicicola resistance but additive to HUB1 for B. cinerea resistance. HUB1 interacts with MED21, a subunit of the Arabidopsis Mediator, a conserved complex that regulates RNA polymerase II. RNA interference lines with reduced MED21 expression are highly susceptible to A. brassicicola and B. cinerea, whereas T-DNA insertion alleles are embryonic lethal, suggesting an essential role for MED21. However, HUB1-mediated histone H2B modification is independent of histone H3 and DNA methylation. In sum, histone H2B monoubiquitination is an important chromatin modification with regulatory roles in plant defense against necrotrophic fungi most likely through modulation of gene expression.
Collapse
Affiliation(s)
- Rahul Dhawan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Transcriptional repressor proteins play key roles in the control of gene expression in development. For the Drosophila embryo, the following two functional classes of repressors have been described: short-range repressors such as Knirps that locally inhibit the activity of enhancers and long-range repressors such as Hairy that can dominantly inhibit distal elements. Several long-range repressors interact with Groucho, a conserved corepressor that is homologous to mammalian TLE proteins. Groucho interacts with histone deacetylases and histone proteins, suggesting that it may effect repression by means of chromatin modification; however, it is not known how long-range effects are mediated. Using embryo chromatin immunoprecipitation, we have analyzed a Hairy-repressible gene in the embryo during activation and repression. When inactivated, repressors, activators, and coactivators cooccupy the promoter, suggesting that repression is not accomplished by the displacement of activators or coactivators. Strikingly, the Groucho corepressor is found to be recruited to the transcribed region of the gene, contacting a region of several kilobases, concomitant with a loss of histone H3 and H4 acetylation. Groucho has been shown to form higher-order complexes in vitro; thus, our observations suggest that long-range effects may be mediated by a "spreading" mechanism, modifying chromatin over extensive regions to inhibit transcription.
Collapse
|
17
|
Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 2007; 26:717-29. [PMID: 17560376 DOI: 10.1016/j.molcel.2007.05.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/04/2007] [Accepted: 05/07/2007] [Indexed: 11/26/2022]
Abstract
Mediator, a central coregulator of transcription, has been identified as a large protein complex in eukaryotes ranging from yeast to man. It is therefore remarkable that Mediator has not yet been identified within the plant kingdom. Here we identify Mediator in a plant, Arabidopsis thaliana. The plant Mediator subunits typically show very low homology to other species, but our biochemical purification identifies 21 conserved and six A. thaliana-specific Mediator subunits. Most notably, we identify the A. thaliana proteins STRUWWELPETER (SWP) and PHYTOCHROME AND FLOWERING TIME 1 (PFT1) as the Med14 and Med25 subunits, respectively. These findings show that specific plant Mediator subunits are linked to the regulation of specialized processes such as the control of cell proliferation and the regulation of flowering time in response to light quality. The identification of the plant Mediator will provide new tools and insights into the regulation of transcription in plants.
Collapse
Affiliation(s)
- Stefan Bäckström
- Department of Medical Biochemistry and Biophysics, KBC, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|