1
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
2
|
Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Mol Genet Genomics 2020; 296:1-20. [PMID: 32888055 DOI: 10.1007/s00438-020-01721-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.
Collapse
|
3
|
Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Sci Rep 2020; 10:6055. [PMID: 32269268 PMCID: PMC7142091 DOI: 10.1038/s41598-020-63209-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
Heterochromatin regulation is critical for genomic stability. Different H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fission yeast. We identified several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin.
Collapse
|
4
|
Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Caenorhabditis elegans Gene Family. Genetics 2017; 207:529-545. [PMID: 28801529 DOI: 10.1534/genetics.117.300134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Repetitive DNA sequences are subject to gene silencing in various animal species. Under specific circumstances repetitive DNA sequences can escape such silencing. For example, exogenously added, extrachromosomal DNA sequences that are stably inherited in multicopy repetitive arrays in the nematode Caenorhabditis elegans are frequently silenced in the germline, whereas such silencing often does not occur in the soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA silencing. Indeed, such "antisilencing" factors have been revealed through genetic screens that identified mutant loci in which repetitive transgenic arrays are aberrantly silenced in the soma. We describe here a novel locus, pals-22 (for protein containing ALS2CR12 signature), required to prevent silencing of repetitive transgenes in neurons and other somatic tissue types. pals-22 deficiency also severely impacts animal vigor and confers phenotypes reminiscent of accelerated aging. We find that pals-22 is a member of a large family of divergent genes (39 members), defined by homology to the ALS2CR12 protein family. While gene family members are highly divergent, they show striking patterns of chromosomal clustering. The family expansion appears C. elegans-specific and has not occurred to the same extent in other nematode species for which genome sequences are available. The transgene-silencing phenotype observed upon loss of PALS-22 protein depends on the biogenesis of small RNAs. We speculate that the pals gene family may be part of a species-specific cellular defense mechanism.
Collapse
|
5
|
A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2017; 7:343-353. [PMID: 28007841 PMCID: PMC5295584 DOI: 10.1534/g3.116.037747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development.
Collapse
|
6
|
Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun 2016; 7:11715. [PMID: 27273316 PMCID: PMC4899616 DOI: 10.1038/ncomms11715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. Transposons and repetitive sequences are typically subject to transcription silencing. Here, Zhang et al. find that the bromodomain-containing protein BRAT1 forms a complex with BRP1, recognizes histone acetylation and acts to prevent transcriptional silencing in Arabidopsis.
Collapse
Affiliation(s)
- Cui-Jun Zhang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chang-Rong Shao
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
7
|
Cattaneo M, Morozumi Y, Perazza D, Boussouar F, Jamshidikia M, Rousseaux S, Verdel A, Khochbin S. Lessons from yeast on emerging roles of the ATAD2 protein family in gene regulation and genome organization. Mol Cells 2014; 37:851-6. [PMID: 25377252 PMCID: PMC4275701 DOI: 10.14348/molcells.2014.0258] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/26/2022] Open
Abstract
ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.
Collapse
Affiliation(s)
- Matteo Cattaneo
- Team RNA and Epigenetics, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Yuichi Morozumi
- Team Epigenetics and Cell Signaling, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Daniel Perazza
- Team RNA and Epigenetics, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Fayçal Boussouar
- Team Epigenetics and Cell Signaling, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Mahya Jamshidikia
- Team Epigenetics and Cell Signaling, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Sophie Rousseaux
- Team Epigenetics and Cell Signaling, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - André Verdel
- Team RNA and Epigenetics, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| | - Saadi Khochbin
- Team Epigenetics and Cell Signaling, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
- INSERM, U823, Université Joseph Fourier – Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex,
France
| |
Collapse
|
8
|
SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans. Dev Biol 2014; 392:266-82. [PMID: 24882710 DOI: 10.1016/j.ydbio.2014.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
Abstract
Chromatin regulators contribute to the developmental control of gene expression. In the nematode Caenorhabditis elegans, the roles of chromatin regulation in development have been explored in several contexts, including vulval differentiation. The synthetic multivulva (synMuv) genes are regulators of vulval development in C. elegans and the proteins encoded by these genes include components of several histone modification and chromatin remodelling complexes. By inhibiting ectopic expression of the epidermal growth factor (LIN-3) in the nematode hypodermis, the synMuv genes prevent inappropriate vulval induction. In a forward genetic screen for modifiers of the expression of a hypodermal reporter gene, we identified a mutation that results in increased expression of the reporter. This mutation also suppresses ectopic vulval induction in synMuv mutants and we have consequently named the affected gene suppressor of synthetic multivulva-1 (sumv-1). We show that SUMV-1 is required in the hypodermis for the synMuv phenotype and that loss of sumv-1 function suppresses ectopic expression of lin-3 in synMuv mutant animals. In yeast two-hybrid assays SUMV-1 physically interacts with SUMV-2, and reduction of sumv-2 function also suppresses the synMuv phenotype. We identified similarities between SUMV-1 and SUMV-2 and mammalian proteins KAT8 NSL2 and KAT8 NSL3, respectively, which are components of the KAT8/MOF histone acetyltransferase complex. Reduction of function of mys-2, which encodes the enzymatic component of the KAT8/MOF complex, also suppresses the synMuv phenotype, and MYS-2 physically interacts with SUMV-2 in yeast two-hybrid assays. Together these observations suggest that SUMV-1 and SUMV-2 may function together with MYS-2 in a nematode KAT8/MOF-like complex to antagonise the activity of the synMuv genes.
Collapse
|
9
|
Mutations in the pqe-1 gene enhance transgene expression in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2012; 2:741-51. [PMID: 22870397 PMCID: PMC3385980 DOI: 10.1534/g3.112.002832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/24/2012] [Indexed: 11/18/2022]
Abstract
Although various genetic tools have been developed and used as transgenes, the expression of the transgenes often is hampered by negative regulators. Disrupting such negative regulators of gene expression is potentially a way to overcome the common problem of low expression of transgenes. To find such regulators whose mutations enhance transgene expression in Caenorhabditis elegans, we took advantage of a newly developed reporter transgene, lin-11pAΔ::venus. This transgene induces expression of a fluorescent protein, Venus, in specific neurons including AIZ, where the expression was stochastic. The frequency of reporter expression in AIZ seemed to be correlated with the strength of transgene expression. By using this system, in which a moderate increase of expression was converted to all-or-none expression states, we describe here a forward genetic screen for mutations that enhance the expression of transgenes. Through the screen, we found that mutations in the pqe-1 gene, which encodes a Q/P-rich nuclear protein with an exonuclease domain, increase the chance of reporter expression in AIZ. The fluorescence intensity in RIC, in which all lin-11pAΔ::venus animals show reporter expression, was increased in pqe-1 mutants, suggesting that pqe-1 reduces the expression level of the transgene. Expression of transgenes with other promoters, 3'UTR, or reporter genes was also enhanced by the pqe-1 mutation, suggesting that the effect was not specific to a particular type of transgenes, whereas the effect did not seem to extend to endogenous genes. We propose that pqe-1 mutants can be used to increase the expression of various useful transgenes.
Collapse
|
10
|
Wu X, Shi Z, Cui M, Han M, Ruvkun G. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 2012; 8:e1002542. [PMID: 22412383 PMCID: PMC3297578 DOI: 10.1371/journal.pgen.1002542] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. In metazoans, soma and germline have specialized functions that require differential tissue-specific gene expression. In C. elegans, explicit chromatin marks deposited by the MES-4 histone methyltransferase and the MRG-1 chromodomain protein allow germline expression of particular suites of target genes. Conversely, the expression of germline-specific genes is repressed in somatic cells by other chromatin regulatory factors, including the retinoblastoma pathway genes. We characterized the distinct profiles of somatic misexpression of normally germline-specific genes in these mutants and mapped out three chromatin complexes that prevent misexpression. We demonstrate that one of the complexes closely counteracts the activity of MES-4 and MRG-1, whereas another complex interacts with additional regulators that are yet to be identified. We show that these intersecting chromatin complexes prevent the upregulation of a suite of germline-specific as well as ubiquitous small RNA pathway genes, which contributes to the enhanced RNAi response in retinoblastoma pathway mutant worms. We suggest that this function of the retinoblastoma pathway chromatin factors to prevent germline-associated gene expression programs in the soma and the upregulation of small RNA pathways may also underlie their role as tumor suppressors.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mingxue Cui
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Leachman NT, Brellier F, Ferralli J, Chiquet-Ehrismann R, Tucker RP. ATAD2B is a phylogenetically conserved nuclear protein expressed during neuronal differentiation and tumorigenesis. Dev Growth Differ 2011; 52:747-55. [PMID: 21158754 DOI: 10.1111/j.1440-169x.2010.01211.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ATAD2 is an E2F target gene that is highly expressed in gastrointestinal and breast carcinomas. Here we characterize a related gene product, ATAD2B. Both genes are evolutionarily conserved, with orthologues present in all eukaryotic genomes examined. Human ATAD2B shows a high degree of similarity to ATAD2. Both contain an AAA domain and a bromodomain with amino acid sequences sharing 97% and 74% identity, respectively. The expression of ATAD2B was studied in the chicken embryo using a polyclonal antibody raised against a recombinant fragment of human ATAD2B. Immunohistochemistry revealed transient nuclear expression in subpopulations of developing neurons. The transient nature of the expression was confirmed by immunoblotting homogenates of the developing telencephalon. Cell fractionation was used to confirm the nuclear localization of ATAD2B in the developing nervous system: anti-ATAD2B recognizes a smaller band (approximately 160 kDa) in the nuclear fraction and a larger band (approximately 300 kDa) in the membrane fraction, suggesting that posttranslational processing of ATAD2B may regulate its transport to the nucleus. The expression of ATAD2B was also studied in human tumors. Oncomine and immunohistochemistry reveal ATAD2B expression in glioblastoma and oligodendroglioma; ATAD2B immunostaining was also elevated in human breast carcinoma. In tumors ATAD2B appears to be cytoplasmic or membrane bound, and not nuclear. Our observations suggest that ATAD2B may play a role in neuronal differentiation and tumor progression.
Collapse
Affiliation(s)
- Nathaniel T Leachman
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
12
|
Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol 2010; 30:5260-72. [PMID: 20855524 DOI: 10.1128/mcb.00484-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone modifications are regarded as the carrier of epigenetic memory through cell divisions. How the marks facilitate cell cycle-dependent gene expression is poorly understood. The evolutionarily conserved AAA ATPase ANCCA (AAA nuclear coregulator cancer-associated protein)/ATAD2 was identified as a direct target of oncogene AIB1/ACTR/SRC-3 and a transcriptional coregulator for estrogen and androgen receptors and is strongly implicated in tumorigenesis. We report here that ANCCA directly interacts with E2F1 to E2F3 and that its N terminus interacts with both the N and C termini of E2F1. ANCCA preferentially associates via its bromodomain with H3 acetylated at lysine 14 (H3K14ac) and is required for key cell cycle gene expression and cancer cell proliferation. ANCCA associates with chromosomes at late mitosis, and its occupancy at E2F targets peaks at the G(1)-to-S transition. Strikingly, ANCCA is required for recruitment of specific E2Fs to their targets and chromatin assembly of the host cell factor 1 (HCF-1)-MLL histone methyltransferase complex. ANCCA depletion results in a marked decrease of the gene activation-linked H3K4me3 mark. Bromodomain mutations disable ANCCA function as an E2F coactivator and its ability to promote cancer cell proliferation, while ANCCA overexpression in tumors correlates with tumor growth. Together, these results suggest that ANCCA acts as a pioneer factor in E2F-dependent gene activation and that a novel mechanism involving ANCCA bromodomain may contribute to cancer cell proliferation.
Collapse
|
13
|
Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, Barbry P, Debernardi A, Brambilla C, Brambilla E, Rousseaux S, Khochbin S. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 2010; 29:5171-81. [PMID: 20581866 DOI: 10.1038/onc.2010.259] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells frequently express genes normally active in male germ cells. ATAD2 is one of them encoding a conserved factor harbouring an AAA type ATPase domain and a bromodomain. We show here that ATAD2 is highly expressed in testis as well as in many cancers of different origins and that its high expression is a strong predictor of rapid mortality in lung and breast cancers. These observations suggest that ATAD2 acts on upstream and basic cellular processes to enhance oncogenesis in a variety of unrelated cell types. Accordingly, our functional studies show that ATAD2 controls chromatin dynamics, genome transcriptional activities and apoptotic cell response. We could also highlight some of the important intrinsic properties of its two regulatory domains, including a functional cross-talk between the AAA ATPase domain and the bromodomain. Altogether, these data indicate that ATAD2 overexpression in somatic cells, by acting on basic properties of chromatin, may contribute to malignant transformation.
Collapse
|
14
|
Abstract
The Saccharomyces cerevisiae Yta7 protein is a component of a nucleosome bound protein complex that maintains distinct transcriptional zones of chromatin. We previously found that one protein copurifying with Yta7 is the yFACT member Spt16. Epistasis analyses revealed a link between Yta7, Spt16, and other previously identified members of the histone regulatory pathway. In concurrence, Yta7 was found to regulate histone gene transcription in a cell-cycle-dependent manner. Association at the histone gene loci appeared to occur through binding of the bromodomain-like region of Yta7 with the N-terminal tail of histone H3. Our work suggests a mechanism in which Yta7 is localized to chromatin to establish regions of transcriptional silencing, and that one facet of this cellular mechanism is to modulate transcription of histone genes.
Collapse
|
15
|
Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates. Genetics 2008; 179:2001-12. [PMID: 18689876 DOI: 10.1534/genetics.108.092197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms.
Collapse
|