1
|
Shen Q, Lin Y, Li Y, Wang G. Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. PLANTS 2021; 10:plants10061165. [PMID: 34201297 PMCID: PMC8228231 DOI: 10.3390/plants10061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Given their sessile nature, plants have evolved sophisticated regulatory networks to confer developmental plasticity for adaptation to fluctuating environments. Epigenetic codes, like tri-methylation of histone H3 on Lys27 (H3K27me3), are evidenced to account for this evolutionary benefit. Polycomb repressive complex 2 (PRC2) and PRC1 implement and maintain the H3K27me3-mediated gene repression in most eukaryotic cells. Plants take advantage of this epigenetic machinery to reprogram gene expression in development and environmental adaption. Recent studies have uncovered a number of new players involved in the establishment, erasure, and regulation of H3K27me3 mark in plants, particularly highlighting new roles in plants’ responses to environmental cues. Here, we review current knowledge on PRC2-H3K27me3 dynamics occurring during plant growth and development, including its writers, erasers, and readers, as well as targeting mechanisms, and summarize the emerging roles of H3K27me3 mark in plant adaptation to environmental stresses.
Collapse
|
2
|
Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture. Nat Commun 2019; 10:460. [PMID: 30692537 PMCID: PMC6484225 DOI: 10.1038/s41467-018-08072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised. The inactive X chromosome (Xi) is a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes. Here the authors show that Xi transiently relocates from the nuclear periphery during replication in a CIZ1-dependent manner, which plays a role in maintaining PRC-mediated repressed chromatin.
Collapse
|
3
|
MiR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging. Nat Commun 2018; 9:4188. [PMID: 30305625 PMCID: PMC6180074 DOI: 10.1038/s41467-018-06592-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is a prominent risk factor for neurodegenerative disease. Defining gene expression mechanisms affecting healthy brain aging should lead to insight into genes that modulate susceptibility to disease. To define such mechanisms, we have pursued analysis of miR-34 mutants in Drosophila. The miR-34 mutant brain displays a gene expression profile of accelerated aging, and miR-34 upregulation is a potent suppressor of polyglutamine-induced neurodegeneration. We demonstrate that Pcl and Su(z)12, two components of polycomb repressive complex 2, (PRC2), are targets of miR-34, with implications for age-associated processes. Because PRC2 confers the repressive H3K27me3 mark, we hypothesize that miR-34 modulates PRC2 activity to relieve silencing of genes promoting healthful aging. Gene expression profiling of the brains of hypomorphic mutants in Enhancer of zeste (E(z)), the enzymatic methyltransferase component of PRC2, revealed a younger brain transcriptome profile and identified the small heat shock proteins as key genes reduced in expression with age. miR-34 is known to regulate age-related gene expression in the Drosophila brain, and miR-34 overexpression can attenuate neurodegeneration induced by polyQ-expanded proteins. Here, Kennerdell and colleagues show that miR-34 confers longevity and neuroprotection via an epigenetic regulator Polycomb Repressive Complex 2 and molecular chaperone expression.
Collapse
|
4
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Zhimulev IF, Belyaeva ES, Vatolina TY, Demakov SA. Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy. Bioessays 2012; 34:498-508. [PMID: 22419120 DOI: 10.1002/bies.201100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome-wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association with "active" chromatin proteins, nucleosome remodeling, and origin recognition complexes, and so they have three functions: acting as binding sites for RNA pol II, initiation of replication and nucleosome remodeling of short fragments of DNA. The borders and organization of the same band and interband regions are largely identical, irrespective of the cell type studied. This demonstrates that the banding pattern is a universal principle of the organization of interphase polytene and non-polytene chromosomes.
Collapse
Affiliation(s)
- Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
6
|
Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39:761-72. [PMID: 20832727 DOI: 10.1016/j.molcel.2010.08.013] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/10/2010] [Accepted: 06/28/2010] [Indexed: 12/19/2022]
Abstract
In an inducible oncogenesis model, the miR-200 family is inhibited during CSC formation but not transformation, and inhibition of miR-200b increases CSC formation. Interestingly, miR-200b directly targets Suz12, a subunit of a polycomb repressor complex (PRC2). Loss of miR-200 during CSC formation increases Suz12 expression, Suz12 binding, H3-K27 trimethylation, and Polycomb-mediated repression of the E-cadherin gene. miR-200b expression or Suz12 depletion blocks the formation and maintenance of mammospheres, and in combination with chemotherapy suppresses tumor growth and prolongs remission in mouse xenografts. Conversely, ectopic expression of Suz12 in transformed cells is sufficient to generate CSCs. The miR-200b-Suz12-cadherin pathway is important for CSC growth and invasive ability in genetically distinct breast cancer cells, and its transcriptional signature is observed in metastatic breast tumors. The interaction between miR-200 and Suz12 is highly conserved, suggesting that it represents an ancient regulatory mechanism to control the growth and function of stem cells.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen S, Rasmuson-Lestander Å. Regulation of the Drosophila engrailed gene by Polycomb repressor complex 2. Mech Dev 2009; 126:443-8. [DOI: 10.1016/j.mod.2009.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/02/2009] [Accepted: 01/17/2009] [Indexed: 12/01/2022]
|
8
|
Joshi P, Carrington EA, Wang L, Ketel CS, Miller EL, Jones RS, Simon JA. Dominant alleles identify SET domain residues required for histone methyltransferase of Polycomb repressive complex 2. J Biol Chem 2008; 283:27757-27766. [PMID: 18693240 DOI: 10.1074/jbc.m804442200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb gene silencing requires histone methyltransferase activity of Polycomb repressive complex 2 (PRC2), which methylates lysine 27 of histone H3. Information on how PRC2 works is limited by lack of structural data on the catalytic subunit, Enhancer of zeste (E(Z)), and the paucity of E(z) mutant alleles that alter its SET domain. Here we analyze missense alleles of Drosophila E(z), selected for molecular study because of their dominant genetic effects. Four missense alleles identify key E(Z) SET domain residues, and a fifth is located in the adjacent CXC domain. Analysis of mutant PRC2 complexes in vitro, and H3-K27 methylation in vivo, shows that each SET domain mutation disrupts PRC2 histone methyltransferase. Based on known SET domain structures, the mutations likely affect either the lysine-substrate binding pocket, the binding site for the adenosylmethionine methyl donor, or a critical tyrosine predicted to interact with the substrate lysine epsilon-amino group. In contrast, the CXC mutant retains catalytic activity, Lys-27 specificity, and trimethylation capacity. Deletion analysis also reveals a functional requirement for a conserved E(Z) domain N-terminal to CXC and SET. These results identify critical SET domain residues needed for PRC2 enzyme function, and they also emphasize functional inputs from outside the SET domain.
Collapse
Affiliation(s)
- Preeti Joshi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | | | - Liangjun Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Carrie S Ketel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Ellen L Miller
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275.
| | - Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455.
| |
Collapse
|