1
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Abstract
A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.
Collapse
Affiliation(s)
- Robert Lehmann
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090, Vienna, Austria
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| |
Collapse
|
3
|
Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, Pozniakovski A, Moerman DG, Jorgensen EM. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 2014; 11:529-34. [PMID: 24820376 PMCID: PMC4126194 DOI: 10.1038/nmeth.2889] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (~60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.
Collapse
Affiliation(s)
- Christian Frokjaer-Jensen
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - M Wayne Davis
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Mihail Sarov
- TransgeneOmics, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew LaBella
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Andrei Pozniakovski
- TransgeneOmics, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Elliott TA, Stage DE, Crease TJ, Eickbush TH. In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome. Mob DNA 2013; 4:20. [PMID: 24059783 PMCID: PMC3849761 DOI: 10.1186/1759-8753-4-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022] Open
Abstract
Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Deborah E Stage
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.,Department of Biology, Butler County Community College, Butler, PA 16002, USA
| | - Teresa J Crease
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
5
|
Bire S, Casteret S, Arnaoty A, Piégu B, Lecomte T, Bigot Y. Transposase concentration controls transposition activity: myth or reality? Gene 2013; 530:165-71. [PMID: 23994686 DOI: 10.1016/j.gene.2013.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022]
Abstract
Deciphering the mechanisms underlying the regulation of DNA transposons might be central to understanding their function and dynamics in genomes. From results obtained under artificial experimental conditions, it has been proposed that some DNA transposons self-regulate their activity via overproduction inhibition (OPI), a mechanism by which transposition activity is down-regulated when the transposase is overconcentrated in cells. However, numerous studies have given contradictory results depending on the experimental conditions. Moreover, we do not know in which cellular compartment this phenomenon takes place, or whether transposases assemble to form dense foci when they are highly expressed in cells. In the present review, we focus on investigating the data available about eukaryotic transposons to explain the mechanisms underlying OPI. Data in the literature indicate that members of the IS630-Tc1-mariner, Hobo-Ac-Tam, and piggyBac superfamilies are able to use OPI to self-regulate their transposition activity in vivo in most eukaryotic cells, and that some of them are able to assemble so as to form higher order soluble oligomers. We also investigated the localization and behavior of GFP-fused transposases belonging to the mariner, Tc1-like, and piggyBac families, investigating their ability to aggregate in cells when they are overexpressed. Transposases are able to form dense foci when they are highly expressed. Moreover, the cellular compartments in which these foci are concentrated depend on the transposase, and on its expression. The data presented here suggest that sequestration in cytoplasmic or nucleoplasmic foci, or within the nucleoli, might protect the genome against the potentially genotoxic effects of the non-specific nuclease activities of eukaryotic transposases.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
7
|
Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco MDM, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics 2012; 13:314. [PMID: 22800085 PMCID: PMC3441728 DOI: 10.1186/1471-2164-13-314] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17. Results We present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102. Conclusions Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these elements have undergone diversification and subsequent selective amplification after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17) and the “patchy” distribution among different strains point to the mobile elements as major generators of Verticillium intra- and inter-specific genomic variation.
Collapse
|
8
|
Renault S, Demattéi MV, Lahouassa H, Bigot Y, Augé-Gouillou C. In vitro recombination and inverted terminal repeat binding activities of the Mcmar1 transposase. Biochemistry 2010; 49:3534-44. [PMID: 20359246 DOI: 10.1021/bi901957p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Mcmar1 mariner element (MLE) presents some intriguing features with two large, perfectly conserved, 355 bp inverted terminal repeats (ITRs) containing two 28 bp direct repeats (DRs). The presence of a complete ORF in Mcmar1 makes it possible to explore the transposition of this unusual MLE. Mcmar1 transposase (MCMAR1) was purified, and in vitro transposition assays showed that it is able to promote ITR-dependent DNA cleavages and recombination events, which correspond to plasmid fusions and transpositions with imprecise ends. Further analyses indicated that MCMAR1 is able to interact with the 355 bp ITR through two DRs: the EDR (external DR) is a high-affinity binding site for MCMAR1, whereas the IDR (internal DR) is a low-affinity binding site. The main complex detected within the EDR contained a transposase dimer and only one DNA molecule. We hypothesize that the inability of MCMAR1 to promote precise in vitro transposition events could be due to mutations in its ORF sequence or to the specific features of transposase binding to the ITR. Indeed, the ITR region spanning from EDR to IDR resembles a MITE and could be bent by specific host factors. This suggests that the assembly of the transposition complex is more complex than that of those involved in the mobility of the Mos1 and Himar1 mariner elements.
Collapse
Affiliation(s)
- Sylvaine Renault
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR des Sciences & Techniques, Parc de Grandmont, 37200 Tours, France.
| | | | | | | | | |
Collapse
|