1
|
Oh Y, Ingram T, Shekasteband R, Adhikari T, Louws FJ, Dean RA. Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4685-4706. [PMID: 37184211 PMCID: PMC10433936 DOI: 10.1093/jxb/erad182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato-V. dahliae interaction.
Collapse
Affiliation(s)
- Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza Shekasteband
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tika Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
3
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
4
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
5
|
Liu N, Wang P, Li X, Pei Y, Sun Y, Ma X, Ge X, Zhu Y, Li F, Hou Y. Long Non-Coding RNAs profiling in pathogenesis of Verticillium dahliae: New insights in the host-pathogen interaction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111098. [PMID: 34895536 DOI: 10.1016/j.plantsci.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Yutao Zhu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Tang C, Li T, Klosterman SJ, Tian C, Wang Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. THE NEW PHYTOLOGIST 2020; 226:1461-1479. [PMID: 32040203 DOI: 10.1111/nph.16481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. Homologs of the bZIP transcription factor Atf1 are required for virulence in most pathogenic fungi, but the molecular basis for their involvement is largely unknown. We performed targeted gene deletion, expression analysis, biochemistry and pathogenicity assays to demonstrate that VdAtf1 governs pathogenesis via the regulation of nitrosative resistance and nitrogen metabolism in V. dahliae. VdAtf1 controls pathogenesis via the regulation of nitric oxide (NO) resistance and inorganic nitrogen metabolism rather than oxidative resistance and is important for penetration peg formation in V. dahliae. VdAtf1 affects ammonium and nitrate assimilation in response to various nitrogen sources. VdAtf1 may be involved in regulating the expression of VdNut1. VdAtf1 responds to NO stress by strengthening the fungal cell wall, and by causing over-accumulation of methylglyoxal and glycerol, which in turn impacts NO detoxification. We also verified that the VdAtf1 ortholog in Fusarium graminearum mediates nitrogen metabolism, suggesting conservation of this function in related plant pathogenic fungi. Our findings revealed new functions of VdAtf1 in pathogenesis, response to nitrosative stress and nitrogen metabolism in V. dahliae. The results provide novel insights into the regulatory mechanisms of the transcription factor VdAtf1 in virulence.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Tianyu Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
7
|
Fukuda S, Kawasaki Y, Izawa S. Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. J Biosci Bioeng 2019; 128:28-32. [DOI: 10.1016/j.jbiosc.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
|
8
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 PMCID: PMC6329193 DOI: 10.1186/s12870-018-1619-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Md. Harun or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ting-ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Quan-wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Wan-kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ai-ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ju-wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Hai-hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao-ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Jun-wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Shao-qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiang-hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Rui-xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xian-yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Ren-hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Yu-zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - You-lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
9
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 DOI: 10.1186/s12870-018-1619-1614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ting-Ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Quan-Wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao-Ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiang-Hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Rui-Xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xian-Yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ren-Hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| |
Collapse
|
10
|
Oh Y, Robertson SL, Parker J, Muddiman DC, Dean RA. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci 2017; 15:20. [PMID: 29158724 PMCID: PMC5684745 DOI: 10.1186/s12953-017-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen Magnaporthe oryzae copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed. METHODS M. oryzae strain 70-15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source. Proteins were isolated and subjected to unfractionated gel-free based liquid chromatography-tandem mass spectrometry (LC-MS/MS). The subcellular localization and function of the identified proteins were predicted using bioinformatics tools. RESULTS A total of 5498 M. oryzae proteins were identified. Comparative analysis of protein expression showed 363 proteins and 266 proteins significantly induced or uniquely expressed under nitrogen starved or nitrogen supplemented conditions, respectively. A functional analysis of differentially expressed proteins revealed that during nitrogen starvation nitrogen catabolite repression, melanin biosynthesis, protein degradation and protein translation pathways underwent extensive alterations. In addition, nitrogen starvation induced accumulation of various extracellular proteins including small extracellular proteins consistent with observations of a link between nitrogen starvation and the development of pathogenicity in M. oryzae. CONCLUSION The results from this study provide a comprehensive understanding of fungal responses to nitrogen availability.
Collapse
Affiliation(s)
- Yeonyee Oh
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Suzanne L. Robertson
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Jennifer Parker
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - David C. Muddiman
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Ralph A. Dean
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
11
|
Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene 2017; 602:8-15. [DOI: 10.1016/j.gene.2016.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022]
|
12
|
Chen JY, Xiao HL, Gui YJ, Zhang DD, Li L, Bao YM, Dai XF. Characterization of the Verticillium dahliae Exoproteome Involves in Pathogenicity from Cotton-Containing Medium. Front Microbiol 2016; 7:1709. [PMID: 27840627 PMCID: PMC5083787 DOI: 10.3389/fmicb.2016.01709] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. Previous studies have shown that the exoproteome of V. dahliae plays a significant role in this pathogenic process, but the components and mechanisms that underlie this remain unclear. In this study, the exoproteome of V. dahliae was induced in a cotton-containing C’zapek-Dox (CCD) medium and quantified using the high-throughput isobaric tag technique for relative and absolute quantification (iTRAQ). Results showed that the abundance of 271 secreted proteins was affected by the CCD medium, of which 172 contain typical signal peptides generally produced by the Golgi/endoplasmic reticulum (ER). These enhanced abundance proteins were predominantly enriched in carbohydrate hydrolases; 126 were classified as carbohydrate-active (CAZymes) and almost all were significantly up-regulated in the CCD medium. Results showed that CAZymes proteins 30 and 22 participate in pectin and cellulose degradation pathways, corresponding with the transcription levels of several genes encoded plant cell wall degradation enzyme activated significantly during cotton infection. In addition, targeted deletion of two pectin lyase genes (VdPL3.1 and VdPL3.3) impaired wilt virulence to cotton. This study demonstrates that the V. dahliae exoproteome plays a crucial role in the development of symptoms of wilting and necrosis, predominantly via the pathogenic mechanisms of plant cell wall degradation as part of host plant infection.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Hong-Li Xiao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
13
|
Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles 2016; 20:567-77. [DOI: 10.1007/s00792-016-0843-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/05/2016] [Indexed: 11/27/2022]
|