1
|
Nakaniwa R, Misawa Y, Nakasato S, Sano K, Tanaka Y, Nakatani S, Kobata K. Biochemical Aspects of Putative Aminotransferase Responsible for Converting Vanillin to Vanillylamine in the Capsaicinoid Biosynthesis Pathway in Capsicum Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:559-565. [PMID: 38134368 DOI: 10.1021/acs.jafc.3c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The biosynthesis pathway of capsaicinoids includes the conversion of vanillin to vanillylamine, where putative aminotransferase (pAMT) is thought to be the enzyme responsible in Capsicum plants. The objectives of this study were to prove that pAMT is the enzyme responsible for this conversion in plants and to clarify its catalytic properties using biochemical methods. Both an extract of habanero placenta and recombinant pAMT (rpAMT) constructed by using an Escherichia coli expression system were able to convert vanillin to vanillylamine in the presence of γ-aminobutyric acid as an amino donor and pyridoxal phosphate as a coenzyme. Conversion from vanillin to vanillylamine by the placenta extract was significantly attenuated by adding an anti-pAMT antibody to the reaction system. The amino donor specificity and affinity for vanillin of rpAMT were similar to those of the placenta extract. We thus confirmed that pAMT is the enzyme responsible for the conversion of vanillin to vanillylamine in capsaicinoid synthesis in Capsicum fruits. Therefore, we propose that pAMT should henceforth be named vanillin aminotransferase (VAMT).
Collapse
Affiliation(s)
- Ryota Nakaniwa
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yuki Misawa
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Saika Nakasato
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Saitama 350-0295, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| |
Collapse
|
2
|
Zhang W, Wu D, Zhang L, Zhao C, Shu H, Cheng S, Wang Z, Zhu J, Liu P. Identification and expression analysis of capsaicin biosynthesis pathway genes at genome level in Capsicum chinense. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2071633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Wei Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Dan Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Chengzhi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan, PR China
| | - Pingwu Liu
- Fang Zhiyuan Academician Team Innovation Center of Hainan Province, Haikou, Hainan, PR China
| |
Collapse
|
3
|
Yi S, Lee DG, Back S, Hong JP, Jang S, Han K, Kang BC. Genetic mapping revealed that the Pun2 gene in Capsicum chacoense encodes a putative aminotransferase. FRONTIERS IN PLANT SCIENCE 2022; 13:1039393. [PMID: 36388488 PMCID: PMC9664168 DOI: 10.3389/fpls.2022.1039393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Several genes regulating capsaicinoid biosynthesis including Pun1 (also known as CS), Pun3, pAMT, and CaKR1 have been studied. However, the gene encoded by Pun2 in the non-pungent Capsicum chacoense is unknown. This study aimed to identify the Pun2 gene by genetic mapping using interspecific (C. chacoense × Capsicum annuum) and intraspecific (C. chacoense × C. chacoense) populations. QTL mapping using the interspecific F2 population revealed two major QTLs on chromosomes 3 and 9. Two bin markers within the QTL regions on two chromosomes were highly correlated with the capsaicinoid content in the interspecific population. The major QTL, Pun2_PJ_Gibbs_3.11 on chromosome 3, contained the pAMT gene, indicating that the non-pungency of C. chacoense may be attributed to a mutation in the pAMT gene. Sequence analysis revealed a 7 bp nucleotide insertion in the 8th exon of pAMT of the non-pungent C. chacoense. This mutation resulted in the generation of an early stop codon, resulting in a truncated mutant lacking the PLP binding site, which is critical for pAMT enzymatic activity. This insertion co-segregated with the pungency phenotype in the intraspecific F2 population. We named this novel pAMT allele pamt11 . Taken together, these data indicate that the non-pungency of C. chacoense is due to the non-functional pAMT allele, and Pun2 encodes the pAMT gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Zhang B, Hu F, Cai X, Cheng J, Zhang Y, Lin H, Hu K, Wu Z. Integrative Analysis of the Metabolome and Transcriptome of a Cultivated Pepper and Its Wild Progenitor Chiltepin ( Capsicum annuum L. var. glabriusculum) Revealed the Loss of Pungency During Capsicum Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:783496. [PMID: 35069640 PMCID: PMC8767146 DOI: 10.3389/fpls.2021.783496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 05/14/2023]
Abstract
Pungency is a unique characteristic of chili peppers (Capsicum spp.) caused by capsaicinoids. The evolutionary emergence of pungency is thought to be a derived trait within the genus Capsicum. However, it is not well-known how pungency has varied during Capsicum domestication and specialization. In this study, we applied a comparative metabolomics along with transcriptomics analysis to assess various changes between two peppers (a mildly pungent cultivated pepper BB3 and its hot progenitor chiltepin) at four stages of fruit development, focusing on pungency variation. A total of 558 metabolites were detected in two peppers. In comparison with chiltepin, capsaicinoid accumulation in BB3 was almost negligible at the early stage. Next, 412 DEGs associated with the capsaicinoid accumulation pathway were identified through coexpression analysis, of which 18 genes (14 TFs, 3 CBGs, and 1 UGT) were deemed key regulators due to their high coefficients. Based on these data, we speculated that downregulation of these hub genes during the early fruit developmental stage leads to a loss in pungency during Capsicum domestication (from chiltepin to BB3). Of note, a putative UDP-glycosyltransferase, GT86A1, is thought to affect the stabilization of capsaicinoids. Our results lay the foundation for further research on the genetic diversity of pungency traits during Capsicum domestication and specialization.
Collapse
Affiliation(s)
- Bipei Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fang Hu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaotao Cai
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ying Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Lin
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Kailin Hu,
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Zhiming Wu,
| |
Collapse
|
5
|
Seki T, Ota M, Hirano H, Nakagawa K. Characterization of newly developed pepper cultivars ( Capsicum chinense) 'Dieta0011-0301', 'Dieta0011-0602', 'Dieta0041-0401', and 'Dieta0041-0601' containing high capsinoid concentrations and a strong fruity aroma. Biosci Biotechnol Biochem 2020; 84:1870-1885. [PMID: 32471326 DOI: 10.1080/09168451.2020.1771168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Capsaicinoids are responsible for the pungent flavor of peppers (Capsicum sp.). The cultivar CH-19 Sweet is a non-pungent pepper mutant that biosynthesizes the low-pungent capsaicinoid analogs, capsinoids. Capsinoids possess important pharmaceutical properties. However, capsinoid concentrations are very low in CH-19 Sweet, and Capsicum cultivars with high content capsinoids are desirable for industrial applications of capsinoids. Habanero, Bhut Jolokia, and Infinity are species of Capsicum chinense, and have strong pungency and intense fruity flavors. In the present study, we report new cultivars with high concentrations of capsinoids (more than ten-fold higher than in CH-19 Sweet), and showed that these cultivars (Dieta0011-0301 and Dieta0011-0602 from Bhut Jolokia, Dieta0041-0401 and Dieta0041-0601 from Infinity) are of nutritional and medicinal value and have fruity aromas. We also obtained a vanilla bean flavor, vanillyl alcohol, and vanillyl ethyl ether from capsinoids in the fruit of these cultivars following the addition of ethanol at room temperature. ABBREVIATIONS p-AMT: putative aminotransferase; C. annuum: Capsicum annuum; C. chinense: Capsicum chinense; dCAPS: derived Cleaved Amplified Polymorphic Sequences.
Collapse
Affiliation(s)
- Tetsuya Seki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc ., Kawasaki, Japan
| | - Masafumi Ota
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc ., Kawasaki, Japan
| | - Hiroto Hirano
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc ., Kawasaki, Japan
| | - Kiyotaka Nakagawa
- Division of Bioscience and Biotechnology for Future Bioindustries, Department of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| |
Collapse
|
6
|
Tanaka Y, Asano T, Kanemitsu Y, Goto T, Yoshida Y, Yasuba K, Misawa Y, Nakatani S, Kobata K. Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:693-705. [PMID: 31323150 DOI: 10.1111/tpj.14462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Capsaicinoids are unique compounds that give chili pepper fruits their pungent taste. Capsaicinoid levels vary widely among pungent cultivars, which range from low pungency to extremely pungent. However, the molecular mechanisms underlying this quantitative variation have not been elucidated. Our previous study identified various loss-of-function alleles of the pAMT gene which led to low pungency. The mutations in these alleles are commonly defined by Tcc transposon insertion and its footprint. In this study, we identified two leaky pamt alleles (pamtL1 and pamtL2 ) with different levels of putative aminotransferase (pAMT) activity. Notably, both alleles had a Tcc transposon insertion in intron 3, but the locations of the insertions within the intron were different. Genetic analysis revealed that pamtL1 , pamtL2 and a loss-of-function pamt allele reduced capsaicinoid levels to about 50%, 10% and less than 1%, respectively. pamtL1 and pamtL2 encoded functional pAMT proteins, but they exhibited lower transcript levels than the functional type. RNA sequencing analysis showed that intronic transposons disrupted splicing in intron 3, which resulted in simultaneous expression of functional pAMT mRNA and non-functional splice variants containing partial sequences of Tcc. The non-functional splice variants were more dominant in pamtL2 than in pamtL1 . This suggested that the difference in position of the intronic transposons could alter splicing efficiency, leading to different pAMT activities and reducing capsaicinoid content to different levels. Our results provide a striking example of allelic variations caused by intronic transposons; these variations contribute to quantitative differences in secondary metabolite contents.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takaya Asano
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yorika Kanemitsu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Tanjuro Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuichi Yoshida
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenichiro Yasuba
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuki Misawa
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
7
|
Arce-Rodríguez ML, Ochoa-Alejo N. Biochemistry and molecular biology of capsaicinoid biosynthesis: recent advances and perspectives. PLANT CELL REPORTS 2019; 38:1017-1030. [PMID: 30941502 DOI: 10.1007/s00299-019-02406-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The most widely known characteristic of chili pepper fruits is their capacity to produce capsaicinoids, which are responsible for the pungent sensation. The capsaicinoids have several uses in different areas, such as the pharmaceutical, cosmetic and agronomic industries, among others. They are synthesized by the condensation of vanillylamine (derived from phenylalanine) with a branched-chain fatty acid (from valine or leucine precursors), and they generally accumulate in the placental tissue of the chili pepper fruits. The pungency grade depends on the genotype of the plant but is also affected by external stimuli. In recent years, new structural and regulatory genes have been hypothesized to participate in the capsaicinoid biosynthetic pathway. Moreover, the role of some of these genes has been investigated. Substantial progress has been made in discerning the molecular biology of this pathway; however, many questions remain unsolved. We previously reviewed some aspects of the biochemistry and molecular biology of capsaicinoid biosynthesis (Aza-González et al. Plant Cell Rep 30:695-706. Aza-González et al., Plant Cell Rep 30:695-706, 2011), and in this review, we describe advances made by different researchers since our previous review, including the contribution of omics to the knowledge of this pathway.
Collapse
Affiliation(s)
- Magda Lisette Arce-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 libramiento norte carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 libramiento norte carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.
| |
Collapse
|
8
|
Koeda S, Sato K, Saito H, Nagano AJ, Yasugi M, Kudoh H, Tanaka Y. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:65-80. [PMID: 30267113 DOI: 10.1007/s00122-018-3195-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/20/2018] [Indexed: 05/13/2023]
Abstract
A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
Collapse
Affiliation(s)
- Sota Koeda
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218, Japan.
| | - Kosuke Sato
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218, Japan
| | - Hiroki Saito
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto, 619-0218, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, 907-0002, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2914, Japan
| | - Masaki Yasugi
- Faculty of Engineering, Utsunomiya University, Utsunomiya, Tochigi, 321-8585, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Fayos O, Savirón M, Orduna J, Barbero GF, Mallor C, Garcés-Claver A. Quantitation of capsiate and dihydrocapsiate and tentative identification of minor capsinoids in pepper fruits (Capsicum spp.) by HPLC-ESI-MS/MS(QTOF). Food Chem 2018; 270:264-272. [PMID: 30174045 DOI: 10.1016/j.foodchem.2018.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
A highly sensitive, selective method has been developed and validated for determination of capsiate and dihydrocapsiate for the first time using HPLC-ESI/MS(QTOF). For both capsinoids, LODs and LOQs were 0.02 and 0.05 µmol/l, respectively. The intra- and interday repeatability values (RSD %) were 0.26-0.41% for retention time, and 2.25-2.11% for peak area. Recoveries were up to 98% and 97% for capsiate and dihydrocapsiate, respectively. This method was successfully applied to quantify capsiate and dihydrocapsiate in eight pepper fruit accessions. Capsinoids were found in the range of 1.21-544.59 μg/g DW for capsiate and of 0.61-81.95 μg/g DW for dihydrocapsiate. In the 'Tabasco' accession, capsiate and dihydrocapsiate were quantified for the first time, ranging from 3.09 to 58.76 and 1.80 to 6.94 μg/g DW, respectively. Additionally, the ESI-MS/MS(QTOF) analysis has allowed the tentative identification of two other minor capsinoids by exact mass and fragmentation pattern, in the 'Bhut Jolokia' accession.
Collapse
Affiliation(s)
- Oreto Fayos
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain.
| | - María Savirón
- Instituto de Ciencia de Materiales de Aragón (ICMA-CEQMA), Facultad de Ciencias, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Jesús Orduna
- Instituto de Ciencia de Materiales de Aragón (ICMA-CEQMA), Facultad de Ciencias, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Gerardo F Barbero
- Departamento de Química Analítica. Facultad de Ciencias, Universidad de Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3). IVAGRO. Campus Universitario del Río San Pedro, P.O. Box 40, 11510 Puerto Real (Cádiz), Spain.
| | - Cristina Mallor
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain.
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain.
| |
Collapse
|