1
|
Jia K, Wang J, Jiang D, Zhao Q, Shen D, Zhang X, Qiu Z, Wang Y, Lu C, Xia D. Bombyx mori triose-phosphate transporter protein inhibits Bombyx mori nucleopolyhedrovirus infection by reducing the cell glycolysis pathway. Int J Biol Macromol 2024; 266:131197. [PMID: 38554913 DOI: 10.1016/j.ijbiomac.2024.131197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bombyx mori triose-phosphate transporter protein (BmTPT) is a member of the solute carrier (SLC) family. Its main function is to transport triose phosphate between intracellular and extracellular. In this study, BmTPT was cloned and characterised from the fat body of the silkworm Bombyx mori, resulting in an open reading frame (ORF) with a full length of 936 bp, which can encode 311 amino acid residues and has eight transmembrane structural domains. BmTPT was distributed throughout the cell and deposited the most in the nucleus, and is expressed in all tissues of Bombyx mori. Bombyx mori nucleopolyhedrovirus (BmNPV) infection significantly up-regulated BmTPT expression in immune tissue fat bodies. In addition, overexpression of BmTPT significantly inhibited BmNPV infection and markedly reduced the expression of enzymes related to the cellular glycolytic pathway; on the contrary, down-regulation of BmTPT expression by RNA interference resulted in robust replication of BmNPV and a significant increase in the expression of enzymes related to the cellular glycolytic pathway. This is the first report that BmTPT has antiviral effect in silkworm, and also could result in a lack of energy and raw materials for BmNPV replication and infection through down-regulation of the cellular glycolytic pathway.
Collapse
Affiliation(s)
- Kaifang Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yin Wang
- Zhenjiang Agricultural Product Quality Inspection and Testing Center, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Xia D, Jiang D, Yu P, Jia K, Wang J, Shen D, Zhao Q, Lu C. Ras3 in Bombyx mori with antiviral function against B. mori nucleopolyhedrovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105114. [PMID: 38101715 DOI: 10.1016/j.dci.2023.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Bombyx mori ras protein3 (BmRas3) is a small molecular protein in the GTPase superfamily, which has the activity of binding guanosine nucleotides and GTP enzymes. It acts as a molecular switch by coupling extracellular signal to different cellular response through the conversion between Ras-GTP conformation and Ras-GDP conformation, thus regulating signal pathways responsible for cell growth, migration, adhesion, survival and differentiation. However, few studies have been done on Ras3 in silkworm, and its function and mechanism are unclear. In this study, we found that the overexpression of BmRas3 inhibited the infection of BmNPV(B. mori nucleopolyhedrovirus), while knockdown of BmRas3 could promote the infection of BmNPV. In addition, after the BmRas3 in silkworm larvae was knockdown, the anti-BmNPV ability of silkworm decreased and the survival rate of silkworm was affected. Additionly in the cells with BmRas3 overexpression, the transcription level of BmMapkk6 、BmP38、BmJNK、BmERK1/2 and BmERK5 were significantly increased after BmNPV infection, and the transcript levels of BmMapkk6、BmP38、BmJNK、BmERK1/2 and BmERK5 were also inhibited to varying degrees This is the first report on the antiviral effect of BmRas3 in silkworm, which provides a new direction for further study on the anti-BmNPV mechanism of silkworm and screening and cultivation of anti-BmNPV silkworm strain.
Collapse
Affiliation(s)
- Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Dan Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Pengcheng Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Kaifang Jia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Jinyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Bombyx mori C-Type Lectin (BmIML-2) Inhibits the Proliferation of B. mori Nucleopolyhedrovirus (BmNPV) through Involvement in Apoptosis. Int J Mol Sci 2022; 23:ijms23158369. [PMID: 35955502 PMCID: PMC9369074 DOI: 10.3390/ijms23158369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
C-type lectins (CTLs) are widely distributed in mammals, insects, and plants, which act as pattern recognition receptors (PRRs) to recognize pathogens and initiate immune responses. In this study, we identified a C-type lectin gene called BmIML-2 from the silkworm Bombyx mori. Its open reading frame (ORF) encodes 314 amino acids, which contain dual tandem C-type lectin-like domain (CTLD). BmIML-2 is highly expressed in the fat body and is significantly induced at 24 h after BmNPV infection. Moreover, overexpression of BmIML-2 dramatically inhibited the proliferation of BmNPV, and knockdown assay via siRNA further validated the inhibition of BmIML-2 on viral proliferation. In addition, transcript level detection of apoptosis-related genes and observation of apoptosis bodies implied that overexpression of BmIML-2 promoted BmNPV-induced apoptosis. Immunofluorescence analysis indicated that BmIML-2 distributed throughout the cytoplasm and was slightly concentrated in the cell membrane. Taken together, our results suggest that BmIML-2 could inhibit in the proliferation of BmNPV by facilitating cell apoptosis.
Collapse
|
4
|
Zhang X, Zhang Y, Pan J, Gong C, Hu X. Identification and Characterization of BmNPV m6A Sites and Their Possible Roles During Viral Infection. Front Immunol 2022; 13:869313. [PMID: 35371067 PMCID: PMC8966388 DOI: 10.3389/fimmu.2022.869313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most serious pathogens and causes serious economic losses in sericulture. At present, there is no epigenetic modification of BmNPV transcripts, especially of m6A, and this modification mediates diverse cellular and viral functions. This study showed that m6A modifications are widespread in BmNPV transcripts in virally infected cells and the identified m6A peaks with a conserved RRACH sequence. m6A sites predominantly appear in the coding sequences (CDS) and the 3'-end of CDS. About 37% of viral genes with m6A sites deleted from the viral genome did not produce any infectious virions in KOV-transfected cells. Among the viral genes related to replication and proliferation, ie-1 mRNA was identified with a higher m6A level than other viral genes. The m6A sites in the ie-1 mRNA may be negatively related to the protein expression. Viral replication was markedly inhibited in cells overexpressed with BmYTHDF3 in a dose-dependent manner, and a contrary effect was found in si-BmYTHDF3-transfected cells. Collectively, the identification of putative m6A modification in BmNPV transcripts provides a foundation for comprehensively understanding the viral infection, replication, and pathobiology in silkworms.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, China
| | - Yaxin Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China.,Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
6
|
Functional Characterization of the Group I Alphabaculovirus Specific Gene ac73. Virol Sin 2019; 34:701-711. [PMID: 31317397 DOI: 10.1007/s12250-019-00146-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Baculoviridae is a family of large DNA viruses that specifically infect insects. It contains four genera, Alpha-, Beta-, Gamma-, and Deltabaculovirus. Alphabaculovirus is further divided into Group I and II, and Group I appears to be emerged most recently among all baculoviruses. Interestingly, there are 12 Group I specific genes that are only found in this lineage. Studying these genes is helpful to understand how baculoviruses evolved. Here, we reported the functional analyzing results of ac73, a function unknown Group I specific gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) which is the type species of baculovirus. The AC73 protein encoded by ac73 was found to be expressed during the late stage of infection and incorporated into the nucleocapsids of budded virus (BV) and occlusion-derived virus (ODV). In infected cells, AC73 resided mainly in the ring zone region of the nucleus, and appeared to be assembled into occlusion bodies (OBs). The ac73 knockout and repaired viruses were constructed and studied by in vitro and in vivo infection. Although ac73 was not essential for BV and ODV or OB formation, the BV titer and viral infectivity in insect larvae of ac73 knockout AcMNPV decreased by about 5-8 and 3-4 fold compared to those of wild type virus, respectively, suggesting ac73 contributed to infectious BV production and viral infectivity in vivo. This research provides new insight into the function of this Group I specific gene.
Collapse
|
7
|
Costa Navarro GS, Amalfi S, López MG, Llauger G, Arneodo JD, Taboga O, Alfonso V. The autographa californica multiple nucleopolyhedrovirus Ac12: A non-essential F box-like protein that interacts with cellular SKP1 component of the E3 ubiquitin ligase complex. Virus Res 2018; 260:67-77. [PMID: 30472094 DOI: 10.1016/j.virusres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac12 gene, which is conserved in ten other baculovirus, codes a predicted 217 amino acid protein of unknown function. In this study, we investigated the role of ac12 during baculovirus infection, by generating an ac12 knockout virus. The transfection of the recombinant genome in insect cells resulted in unaltered viral dispersion and occlusion body production when compared to the control bacmid. This finding demonstrates that ac12 is a non-essential gene. Transmission and scanning electron microscopy (SEM) analyses showed that ac12 knockout virus produced occlusion bodies morphologically similar to those obtained with the control and capable to occlude virions. However, a slight but significant size difference was detected by SEM observation of purified occlusion bodies. This difference suggests that ac12 may be involved in regulatory pathways of polyhedrin production or occlusion body assembly without affecting either viral occlusion or oral infectivity in Rachiplusia nu larvae. This was evidenced by bioassays that showed no significant differences in the conditions tested. A qPCR analysis of viral gene expression during infection evidenced regulatory effects of ac12 over some representative genes of different stages of the viral cycle. In this study, we also showed that ac12 is transcribed at early times after infection and remains detectable up to 72 hours post-infection. The mRNA is translated during the infection and results in a protein that encodes an F-box domain that interacts in vivo and in vitro with S phase kinase associated protein 1 (SKP1) adaptor protein, which is potentially involved in protein ubiquitination pathways.
Collapse
Affiliation(s)
- Guadalupe S Costa Navarro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Sabrina Amalfi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Gabriela López
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Joel D Arneodo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Microbiología y Zoología Agrícola, INTA, De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
8
|
Fei DQ, Yu HZ, Xu JP, Zhang SZ, Wang J, Li B, Yang LA, Hu P, Xu X, Zhao K, Shahzad T. Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:130-137. [PMID: 29793044 DOI: 10.1016/j.dci.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that plays an important role in host defence against pathogen infections. In the present study, native ferritin was isolated from the hemolymph of Bombyx mori using native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that ferritin consisted of two subunits, designated as BmFerHCH and BmFerLCH. Previously integrated previous transcriptome and iTRAQ data showed that the two subunits were down-regulated in resistant silkworm strain BC9 and there was no obvious change in the expression levels of the subunits in susceptible silkworm strain P50 after BmNPV infection. Virus overlay assays revealed that B. mori ferritin as the form of heteropolymer had an interaction with B. mori nucleopolyhedrovirus (BmNPV), but it can't interact with BmNPV after depolymerisation. What's more, reverse transcription quantitative PCR (RT-qPCR) analysis suggested that BmFerHCH and BmFerLCH could be induced by bacteria, virus and iron. This is the first study to extract B. mori ferritin successfully and confirms their roles in the process of BmNPV infection. All these results will lay a foundation for further research the function of B. mori ferritin.
Collapse
Affiliation(s)
- Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Xin Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Kang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Toufeeq Shahzad
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| |
Collapse
|
9
|
Clathrin-mediated endocytosis is a candidate entry sorting mechanism for Bombyx mori cypovirus. Sci Rep 2018; 8:7268. [PMID: 29740149 PMCID: PMC5940776 DOI: 10.1038/s41598-018-25677-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Bombyx mori cypovirus (BmCPV), a member of the Reoviridae, specifically infects silkworms and causes extensive economic losses to the sericulture industry. To date, the entry mechanism of BmCPV into cells is unclear. Here we used electron microscopy to study the route of entry of BmCPV into cells, and the results demonstrated that the entry of BmCPV into BmN cells was mediated by endocytosis. Blocking the entry pathway with four endocytosis inhibitors, including dansylcadaverine, chlorpromazine, genistein, and PP2, significantly decreased the infectivity of BmCPV. This indicates that BmCPV enters BmN cells via endocytosis, and that clathrin-mediated sorting is the predominant entry method. After the relative expression levels of clathrin heavy chain (clathrin, GenBank accession No. NM_001142971.1) and the adaptor protein complex-1 gamma subunit AP-1 (AP-1, GenBank accession No. JQ824201.1), which are involved in clathrin-mediated endocytosis, were inhibited by RNA interference or abolishing the functions of clathrin and AP-1 with their corresponding antibodies, the infectivity of BmCPV was reduced significantly, which suggests that clathrin-mediated endocytosis contributed to the entry of BmCPV into cells. Our findings suggest that the clathrin-mediated endocytosis pathway is a candidate for the development of therapeutics for silkworm cytoplasmic polyhedrosis.
Collapse
|
10
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
11
|
Hu X, Zhu M, Liang Z, Kumar D, Chen F, Zhu L, Kuang S, Xue R, Cao G, Gong C. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection. Mol Genet Genomics 2017; 292:465-474. [DOI: 10.1007/s00438-016-1284-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022]
|