1
|
Ma GJ, Talukder ZI, Song QJ, Li XH, Qi LL. Whole-genome sequencing enables molecular dissection and candidate gene identification of the rust resistance gene R 12 in sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:143. [PMID: 37247164 DOI: 10.1007/s00122-023-04389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
KEY MESSAGE We finely mapped the rust resistance gene R12 to a 0.1248-cM region, identified a potential R12 candidate gene in the XRQ reference genome, and developed three diagnostic SNP markers for R12. Rust is a devastating disease in sunflower that is damaging to the sunflower production globally. Identification and utilization of host-plant resistance are proven to be preferable means for disease control. The rust resistance gene R12 with broad-spectrum specificity to rust was previously localized to a 2.4 Mb region on sunflower chromosome 11. To understand the molecular mechanism of resistance, we conducted whole-genome sequencing of RHA 464 (R12 donor line) and reference genome-based fine mapping of the gene R12. Overall, the 213 markers including 186 SNPs and 27 SSRs' were identified from RHA 464 sequences and used to survey polymorphisms between the parents HA 89 and RHA 464. Saturation mapping identified 26 new markers positioned in the R12 region, and fine mapping with a large population of 2004 individuals positioned R12 at a genetic distance of 0.1248 cM flanked by SNP markers C11_150451336 and S11_189205190. One gene, HanXRQChr11g0348661, with a defense-related NB-ARC-LRR domain, was identified in the XRQr1.0 genome assembly in the R12 region; it is predicted to be a potential R12 candidate gene. Comparative analysis clearly distinguished R12 from the rust R14 gene located in the vicinity of the R12 gene on chromosome 11. Three diagnostic SNP markers, C11_147181749, C11_147312085, and C11_149085167, specific for R12 were developed in the current study, facilitating more accurate and efficient selection in sunflower rust resistance breeding. The current study provides a new genetic resource and starting point for cloning R12 in the future.
Collapse
Affiliation(s)
- G J Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Ball Horticultural Company, 622 Town Road, West Chicago, IL, 60185, USA
| | - Z I Talukder
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102-2765, USA
| | - Q J Song
- Soybean Genomics and Improvement Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705-2350, USA
| | - X H Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - L L Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
2
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2431-2450. [PMID: 32451598 DOI: 10.1007/s00122-020-03609-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.
Collapse
Affiliation(s)
- Yuying Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, 201 Dalian Road, Zunyi, 563099, Guizhou, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Shenzhen, 518120, Guangdong, China
| | - Rongge Wang
- Farm of Seed Production of Gaoyi County, Gaoyi, 051330, Hebei, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
4
|
Qi L, Ma G. Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower ( Helianthus annuus L.). Genes (Basel) 2019; 11:E10. [PMID: 31861950 PMCID: PMC7016752 DOI: 10.3390/genes11010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Rust caused by the fungus Puccinia helianthi and downy mildew (DM) caused by the obligate pathogen Plasmopara halstedii are two of the most globally important sunflower diseases. Resistance to rust and DM is controlled by race-specific single dominant genes. The present study aimed at pyramiding rust resistance genes combined with a DM resistance gene, using molecular markers. Four rust resistant lines, HA-R3 (carrying the R4 gene), HA-R2 (R5), HA-R8 (R15), and RHA 397 (R13b), were each crossed with a common line, RHA 464, carrying a rust gene R12 and a DM gene PlArg. An additional cross was made between HA-R8 and RHA 397. Co-dominant simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers linked to the target genes were used to discriminate between homozygotes and heterozygotes in F2 populations. Five pyramids with different combinations of rust resistance genes were selected in the homozygous condition through marker-assisted selection, and three of them were combined with a DM resistance gene PlArg: R4/R12/PlArg, R5/R12/PlArg, R13b/R12/PlArg, R15/R12, and R13b/R15. The pyramiding lines with the stacking of two rust and one DM genes were resistant to all known races of North American sunflower rust and all known races of the pathogen causing DM, potentially providing multiple and durable resistance to both rust and DM. A cluster of 12 SNP markers spanning a region of 34.5 Mb on chromosome 1, which co-segregate with PlArg, were tested in four populations. Use of those markers, located in a recombination suppressed region in marker selection, is discussed.
Collapse
Affiliation(s)
- Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND 58102-2765, USA
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| |
Collapse
|
5
|
Qi LL, Ma GJ, Li XH, Seiler GJ. Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl 35, from wild Helianthus argophyllus into oilseed and confection sunflowers (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2553-2565. [PMID: 31214741 DOI: 10.1007/s00122-019-03370-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
We have mapped a new downy mildew resistance gene, Pl35, derived from wild Helianthus argophyllus to sunflower linkage group 1. New germplasms incorporating the Pl35 gene were developed for both oilseed and confection sunflower Sunflower downy mildew (DM), caused by the oomycete pathogen Plasmopara halstedii, is an economically important and widespread sunflower disease worldwide. Non-race-specific resistance is not available in sunflower, and breeding for DM resistance relies on race-specific resistance to control this disease. The discovery of the novel DM resistance genes is a long-term task due to the highly virulent and aggressive nature of the P. halstedii pathogen, which reduces the effectiveness of resistance genes. The objectives of this study were to: (1) transfer DM resistance from a wild sunflower species Helianthus argophyllus (PI 494576) into cultivated sunflowers; (2) map the resistance gene; and (3) develop diagnostic single-nucleotide polymorphism (SNP) markers for efficient targeting of the gene in breeding programs. The H. argophyllus accession PI 494576 previously identified with resistance to the most virulent P. halstedii race 777 was crossed with oilseed and confection sunflower in 2012. Molecular mapping using the BC2F2 and BC2F3 populations derived from the cross CONFSCLB1/PI 494576 located a new resistance gene Pl35 on linkage group 1 of the sunflower genome. The new gene Pl35 was successfully transferred from PI 494576 into cultivated sunflowers. SNP markers flanking Pl35 were surveyed in a validation panel of 548 diversified sunflower lines collected globally. Eleven SNP markers were found to be diagnostic for Pl35 SNP alleles, with four co-segregating with Pl35. The developed oilseed and confection germplasms with diagnostic SNP markers for Pl35 will be very useful resources for breeding of DM resistance in sunflower.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - G J Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - X H Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - G J Seiler
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
6
|
Talukder ZI, Ma G, Hulke BS, Jan CC, Qi L. Linkage Mapping and Genome-Wide Association Studies of the Rf Gene Cluster in Sunflower ( Helianthus annuus L.) and Their Distribution in World Sunflower Collections. Front Genet 2019; 10:216. [PMID: 30923538 PMCID: PMC6426773 DOI: 10.3389/fgene.2019.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Commercial hybrid seed production in sunflower currently relies on a single cytoplasmic male sterility (CMS) source, PET1 and the major fertility restoration gene, Rf1, leaving the crop highly vulnerable to issues with genetic bottlenecks. Therefore, having multiple CMS/Rf systems is important for sustainable sunflower production. Here, we report the identification of a new fertility restoration gene, Rf7, which is tightly linked to a new downy mildew (DM) resistance gene, Pl34 , in the USDA sunflower inbred line, RHA 428. The Rf7 gene was genetically mapped to an interval of 0.6 cM on the lower end of linkage group (LG) 13, while Pl34 was mapped 2.1 cM proximal to the Rf7. Both the genes are located in a cluster of Rf and Pl genes. To gain further insights into the distribution of Rf genes in the sunflower breeding lines, we used a genome-wide association study (GWAS) approach to identify markers associated with the fertility restoration trait in a panel of 333 sunflower lines genotyped with 8,723 single nucleotide polymorphism (SNP) markers. Twenty-four SNP markers on the lower end of LG13 spanning a genomic region of 2.47 cM were significantly associated with the trait. The significant markers were surveyed in a world collection panel of 548 sunflower lines and validated to be associated with the Rf1 gene. The SNP haplotypes for the Rf1 gene are different from Rf5 and the Rf7gene located in the Rf gene cluster on LG13. The SNP and SSR markers tightly flanking the Rf7 gene and the Pl34 gene would benefit the sunflower breeders in facilitating marker assisted selection (MAS) of Rf and Pl genes.
Collapse
Affiliation(s)
- Zahirul I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Brent S Hulke
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Chao-Chien Jan
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Lili Qi
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| |
Collapse
|
7
|
Talukder ZI, Ma G, Hulke BS, Jan CC, Qi L. Linkage Mapping and Genome-Wide Association Studies of the Rf Gene Cluster in Sunflower ( Helianthus annuus L.) and Their Distribution in World Sunflower Collections. Front Genet 2019. [PMID: 30923538 DOI: 10.3389/fgene] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Commercial hybrid seed production in sunflower currently relies on a single cytoplasmic male sterility (CMS) source, PET1 and the major fertility restoration gene, Rf1, leaving the crop highly vulnerable to issues with genetic bottlenecks. Therefore, having multiple CMS/Rf systems is important for sustainable sunflower production. Here, we report the identification of a new fertility restoration gene, Rf7, which is tightly linked to a new downy mildew (DM) resistance gene, Pl34 , in the USDA sunflower inbred line, RHA 428. The Rf7 gene was genetically mapped to an interval of 0.6 cM on the lower end of linkage group (LG) 13, while Pl34 was mapped 2.1 cM proximal to the Rf7. Both the genes are located in a cluster of Rf and Pl genes. To gain further insights into the distribution of Rf genes in the sunflower breeding lines, we used a genome-wide association study (GWAS) approach to identify markers associated with the fertility restoration trait in a panel of 333 sunflower lines genotyped with 8,723 single nucleotide polymorphism (SNP) markers. Twenty-four SNP markers on the lower end of LG13 spanning a genomic region of 2.47 cM were significantly associated with the trait. The significant markers were surveyed in a world collection panel of 548 sunflower lines and validated to be associated with the Rf1 gene. The SNP haplotypes for the Rf1 gene are different from Rf5 and the Rf7gene located in the Rf gene cluster on LG13. The SNP and SSR markers tightly flanking the Rf7 gene and the Pl34 gene would benefit the sunflower breeders in facilitating marker assisted selection (MAS) of Rf and Pl genes.
Collapse
Affiliation(s)
- Zahirul I Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Brent S Hulke
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Chao-Chien Jan
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Lili Qi
- Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| |
Collapse
|
8
|
Şahin EÇ, Kalenderoğlu A, Aydın Y, Evci G, Uncuoğlu AA. SSR Markers Suitable for Marker Assisted Selection in Sunflower for Downy Mildew Resistance. Open Life Sci 2018; 13:319-326. [PMID: 33817099 PMCID: PMC7874726 DOI: 10.1515/biol-2018-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/10/2018] [Indexed: 11/15/2022] Open
Abstract
The effectiveness of Pl genes is known to be resistant to downy mildew (DM) disease affected by fungus Plasmopara halstedii in sunflower. In this study phenotypic analysis was performed using inoculation tests and genotypic analysis were carried out with three DM resistance genes Plarg, Pl13 and Pl8. A total of 69 simple sequence repeat markers and 241 F2 individuals derived from a cross of RHA-419 (R) x P6LC (S), RHA-419 (R) x CL (S), RHA-419 (R) x OL (S), RHA419 (R) x 9758R (S), HA-R5 (R) x P6LC (S) and HA89 (R) x P6LC (S) parental lines were used to identify resistant hybrids in sunflower. Results of SSR analysis using markers linked with downy mildew resistance genes (Plarg, Pl8 and Pl13) and downy mildew inoculation tests were evaluated together and ORS716 (for Plarg and Pl13), HA4011 (for Pl8) markers showed positive correlation with their phenotypic results. These results suggest that these markers are associated with DM resistance and they can be used successfully in marker-assisted selection for sunflower breeding programs specific for downy mildew resistance.
Collapse
Affiliation(s)
- Ezgi Çabuk Şahin
- Department of Biology, Faculty of Science and Letters, Marmara University, Istanbul, 34722, Turkey
| | - Aral Kalenderoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| | - Yıldız Aydın
- Department of Biology, Faculty of Science and Letters, Marmara University, Istanbul, 34722, Turkey
| | - Göksel Evci
- Republic of Turkey Ministry of Food, Agriculture and Livestock Directorate of Trakya Agricultural, Research Institute, Edirne, 22100, Turkey
| | - Ahu Altınkut Uncuoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey
| |
Collapse
|
9
|
Dimitrijevic A, Horn R. Sunflower Hybrid Breeding: From Markers to Genomic Selection. FRONTIERS IN PLANT SCIENCE 2018; 8:2238. [PMID: 29387071 PMCID: PMC5776114 DOI: 10.3389/fpls.2017.02238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/20/2017] [Indexed: 05/03/2023]
Abstract
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits.
Collapse
Affiliation(s)
| | - Renate Horn
- Institut für Biowissenschaften, Abteilung Pflanzengenetik, Universität Rostock, Rostock, Germany
| |
Collapse
|
10
|
Pecrix Y, Penouilh-Suzette C, Muños S, Vear F, Godiard L. Ten Broad Spectrum Resistances to Downy Mildew Physically Mapped on the Sunflower Genome. FRONTIERS IN PLANT SCIENCE 2018; 9:1780. [PMID: 30564260 PMCID: PMC6288771 DOI: 10.3389/fpls.2018.01780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.) is conferred by major resistance genes, denoted Pl. Twenty-two Pl genes have been identified and genetically mapped so far. However, over the past 50 years, wide-scale presence of only a few of them in sunflower crops led to the appearance of new, more virulent pathotypes (races) so it is important for sunflower varieties to carry as wide a range of resistance genes as possible. We analyzed phenotypically 12 novel resistant sources discovered in breeding pools derived from two wild Helianthus species and in eight wild H. annuus ecotypes. All were effective against at least 16 downy mildew pathotypes. We mapped their resistance genes on the sunflower reference genome of 3,600 Mb, in intervals that varied from 75 Kb to 32 Mb using an AXIOM® genotyping array of 49,449 SNP. Ten probably new genes were identified according to resistance spectrum, map position, hypersensitive response to the transient expression of a P. halstedii RXLR effector, or the ecotype/species from which they originated. The resistance source HAS6 was found to carry the first downy mildew resistance gene mapped on chromosome 11, whereas the other resistances were positioned on chromosomes 1, 2, 4, and 13 carrying already published Pl genes that we also mapped physically on the same reference genome. The new genes were designated Pl23-Pl32 according to the current nomenclature. However, since sunflower downy mildew resistance genes have not yet been sequenced, rules for designation are discussed. This is the first large scale physical mapping of both 10 new and 10 already reported downy mildew resistance genes in sunflower.
Collapse
Affiliation(s)
- Yann Pecrix
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Charlotte Penouilh-Suzette
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Felicity Vear
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, UMR 1095, Clermont-Ferrand, France
- *Correspondence: Felicity Vear, Laurence Godiard,
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
- *Correspondence: Felicity Vear, Laurence Godiard,
| |
Collapse
|