1
|
Sivabharathi RC, Rajagopalan VR, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. Haplotype-based breeding: A new insight in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112129. [PMID: 38763472 DOI: 10.1016/j.plantsci.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Haplotype-based breeding (HBB) is one of the cutting-edge technologies in the realm of crop improvement due to the increasing availability of Single Nucleotide Polymorphisms identified by Next Generation Sequencing technologies. The complexity of the data can be decreased with fewer statistical tests and a lower probability of spurious associations by combining thousands of SNPs into a few hundred haplotype blocks. The presence of strong genomic regions in breeding lines of most crop species facilitates the use of haplotypes to improve the efficiency of genomic and marker-assisted selection. Haplotype-based breeding as a Genomic Assisted Breeding (GAB) approach harnesses the genome sequence data to pinpoint the allelic variation used to hasten the breeding cycle and circumvent the challenges associated with linkage drag. This review article demonstrates ways to identify candidate genes, superior haplotype identification, haplo-pheno analysis, and haplotype-based marker-assisted selection. The crop improvement strategies that utilize superior haplotypes will hasten the breeding progress to safeguard global food security.
Collapse
Affiliation(s)
- R C Sivabharathi
- Department of Genetics and Plant breeding, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - R Suresh
- Department of Rice, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, CPPS, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Raveendran
- Directorate of research, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Rai M, Tyagi W. Haplotype breeding for unlocking and utilizing plant genomics data. Front Genet 2022; 13:1006288. [DOI: 10.3389/fgene.2022.1006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
|
3
|
Kulkarni R, Zhang Y, Cannon SB, Dorman KS. CAPG: comprehensive allopolyploid genotyper. Bioinformatics 2022; 39:6823535. [PMID: 36367243 PMCID: PMC9825759 DOI: 10.1093/bioinformatics/btac729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Genotyping by sequencing is a powerful tool for investigating genetic variation in plants, but many economically important plants are allopolyploids, where homoeologous similarity obscures the subgenomic origin of reads and confounds allelic and homoeologous SNPs. Recent polyploid genotyping methods use allelic frequencies, rate of heterozygosity, parental cross or other information to resolve read assignment, but good subgenomic references offer the most direct information. The typical strategy aligns reads to the joint reference, performs diploid genotyping within each subgenome, and filters the results, but persistent read misassignment results in an excess of false heterozygous calls. RESULTS We introduce the Comprehensive Allopolyploid Genotyper (CAPG), which formulates an explicit likelihood to weight read alignments against both subgenomic references and genotype individual allopolyploids from whole-genome resequencing data. We demonstrate CAPG in allotetraploids, where it performs better than Genome Analysis Toolkit's HaplotypeCaller applied to reads aligned to the combined subgenomic references. AVAILABILITY AND IMPLEMENTATION Code and tutorials are available at https://github.com/Kkulkarni1/CAPG.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Roshan Kulkarni
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Yudi Zhang
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
4
|
Straub SCK, Boutte J, Fishbein M, Livshultz T. Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11400. [PMID: 33304663 PMCID: PMC7705337 DOI: 10.1002/aps3.11400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/12/2020] [Indexed: 05/07/2023]
Abstract
PREMISE Apocynaceae is the 10th largest flowering plant family and a focus for study of plant-insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non-model taxa, such as Apocynaceae. METHODS Transcriptomes were used to design probes for targeted sequencing of putatively single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess the success of the probe design, the intrageneric and intraspecific variation in the targeted genes, and the utility of the genes for inferring phylogeny. RESULTS From 853 candidate nuclear genes, 835 were consistently recovered in single copy and were variable enough for phylogenomics. The inferred gene trees were useful for coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as monophyletic, while also resolving relationships among species within the genus Apocynum. Intraspecific comparison of Elytropus chilensis individuals revealed numerous single-nucleotide polymorphisms with potential for use in population-level studies. DISCUSSION Community use of this Hyb-Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics.
Collapse
Affiliation(s)
- Shannon C. K. Straub
- Department of BiologyHobart and William Smith Colleges300 Pulteney StreetGenevaNew York14456USA
| | - Julien Boutte
- Department of BiologyHobart and William Smith Colleges300 Pulteney StreetGenevaNew York14456USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology, and EvolutionOklahoma State University301 Physical SciencesStillwaterOklahoma74078USA
| | - Tatyana Livshultz
- Department of Biodiversity, Earth, and Environmental Sciences and the Academy of Natural SciencesDrexel University1900 Benjamin Franklin ParkwayPhiladelphiaPennsylvania19103USA
| |
Collapse
|
5
|
Peng Z, Zhao Z, Clevenger JP, Chu Y, Paudel D, Ozias-Akins P, Wang J. Comparison of SNP Calling Pipelines and NGS Platforms to Predict the Genomic Regions Harboring Candidate Genes for Nodulation in Cultivated Peanut. Front Genet 2020; 11:222. [PMID: 32265983 PMCID: PMC7105825 DOI: 10.3389/fgene.2020.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Cultivated peanut (Arachis hypogaea L.) forms root nodules to enable a symbiotic relationship with rhizobia for biological nitrogen fixation. To understand the genetic factors of peanut nodulation, it is fundamental to genetically map and clone the genes involved in nodulation. For genetic mapping, high throughput genotyping with a large number of polymorphic markers is critical. In this study, two sets of sister recombinant inbred lines (RILs), each containing a nodulating (Nod+) and non-nodulating (Nod-) line, and their Nod+ parental lines were extensively genotyped. Several next generation sequencing (NGS) methods including target enrichment sequencing (TES), RNA-sequencing (RNA-seq), genotyping by sequencing (GBS), and the 48K Axiom Arachis2 SNP array, and various analysis pipelines were applied to identify single nucleotide polymorphisms (SNP) among the two sets of RILs and their parents. TES revealed the largest number of homozygous SNPs (15,947) between the original parental lines, followed by the Axiom Arachis2 SNP array (1,887), RNA-seq (1,633), and GBS (312). Among the five SNP analysis pipelines applied, the alignment to A/B genome followed by HAPLOSWEEP revealed the largest number of homozygous SNPs and highest concordance rate (79%) with the array. A total of 222 and 1,200 homozygous SNPs were polymorphic between the Nod+ and Nod− sister RILs and between their parents, respectively. A graphical genotype map of the sister RILs was constructed with these SNPs, which demonstrated the candidate genomic regions harboring genes controlling nodulation across the whole genome. Results of this study mainly provide the pros and cons of NGS and SNP genotyping platforms for genetic mapping in peanut, and also provide potential genetic resources to narrow down the genomic regions controlling peanut nodulation, which would lay the foundation for gene cloning and improvement of nitrogen fixation in peanut.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Josh Paul Clevenger
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Ye Chu
- Genetic and Genomics and Department of Horticulture, Institute of Plant Breeding, University of Georgia, Tifton, Georgia
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Peggy Ozias-Akins
- Genetic and Genomics and Department of Horticulture, Institute of Plant Breeding, University of Georgia, Tifton, Georgia
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States.,Genetics Institute and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng‐Frimpong R, Miningou A, Ojiewo C, Varshney RK. Genetics, genomics and breeding of groundnut ( Arachis hypogaea L.). PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:425-444. [PMID: 31598026 PMCID: PMC6774334 DOI: 10.1111/pbr.12645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
Groundnut is an important food and oil crop in the semiarid tropics, contributing to household food consumption and cash income. In Asia and Africa, yields are low attributed to various production constraints. This review paper highlights advances in genetics, genomics and breeding to improve the productivity of groundnut. Genetic studies concerning inheritance, genetic variability and heritability, combining ability and trait correlations have provided a better understanding of the crop's genetics to develop appropriate breeding strategies for target traits. Several improved lines and sources of variability have been identified or developed for various economically important traits through conventional breeding. Significant advances have also been made in groundnut genomics including genome sequencing, marker development and genetic and trait mapping. These advances have led to a better understanding of the groundnut genome, discovery of genes/variants for traits of interest and integration of marker-assisted breeding for selected traits. The integration of genomic tools into the breeding process accompanied with increased precision of yield trialing and phenotyping will increase the efficiency and enhance the genetic gain for release of improved groundnut varieties.
Collapse
Affiliation(s)
- Haile Desmae
- International Crop Research Institute for the Semi‐Arid Tropics (ICRISAT)BamakoMali
| | | | | | | | | | | | - Omari Mponda
- Division of Research and Development (DRD)Tanzania Agricultural Research Institute (TARI) ‐ NaliendeleMtwaraTanzania
| | - David Okello
- National Agricultural Research Organization (NARO)EntebbeUganda
| | | | | | | | - Amos Miningou
- Institut National d'Environnement et de Recherches Agricoles (INERA)OuagadougouBurkina Faso
| | | | | |
Collapse
|
7
|
Zhao Z, Tseng YC, Peng Z, Lopez Y, Chen CY, Tillman BL, Dang P, Wang J. Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm. BMC Genet 2018; 19:17. [PMID: 29571286 PMCID: PMC5865372 DOI: 10.1186/s12863-018-0601-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spotted wilt, caused by tomato spotted wilt virus (TSWV), has been one of major diseases in cultivated peanut grown in the southeastern United States (US) since 1990. Previously a major quantitative trait locus (QTL) controlling spotted wilt disease resistance was mapped to an interval of 2.55 cM genetic distance corresponding to a physical distance of 14.4 Mb on chromosome A01 of peanut by using a segregating F2 population. The current study focuses on refining this major QTL region and evaluating its contributions in the US peanut mini-core germplasm. RESULTS Two simple sequence repeat (SSR) markers associated with the major QTL were used to genotype F5 individuals, and 25 heterozygous individuals were selected and developed into an F6 segregating population. Based on visual evaluation in the field, a total of 194 susceptible F6 individuals were selected and planted into F7 generation for phenotyping. Nine SSR markers were used to genotype the 194 F6 individuals, and QTL analysis revealed that a confidence interval of 15.2 Mb region had the QTL with 22.8% phenotypic variation explained (PVE). This QTL interval was further genotyped using the Amplicon-seq method. A total of 81 non-redundant single nucleotide polymorphism (SNP) and eight InDel markers were detected. No recombinant was detected among the F6 individuals. Two InDel markers were integrated into the linkage group and helped to refine the confidence interval of this QTL into a 0.8 Mb region. To test the QTL contributes to the resistance variance in US peanut mini-core germplasm, two flanking SSR markers were used to genotype 107 mini-core germplasm accessions. No statistically significant association was observed between the genotype at the QTL region and spotted wilt resistance in the mini-core germplasm, which indicated that the resistance allelic region at this QTL didn't contribute to the resistance variance in the US peanut mini-core germplasm, thus was a unique resistance source. CONCLUSION A major QTL related to spotted wilt disease resistance in peanut was refined to a 0.8 Mb region on A01 chromosome, which didn't relate to spotted wilt disease resistance in the US peanut mini-core germplasm and might be a unique genetic source.
Collapse
Affiliation(s)
- Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Yu-Chien Tseng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.,North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Charles Y Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Barry L Tillman
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.,North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA
| | - Phat Dang
- USDA-ARS National Peanut Research Laboratory, Dawson, GA, 39842, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA. .,Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
8
|
You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. FRONTIERS IN PLANT SCIENCE 2018; 9:104. [PMID: 29467780 PMCID: PMC5808122 DOI: 10.3389/fpls.2018.00104] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liping Xu
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Jianping Wang
| |
Collapse
|