1
|
Fang S, Zhao J, Lei F, Yu J, Hu Q, Zeng T, Gu L, Wang H, Du X, Cai M, Li Z, Zhu B. Development and characterization of a complete set of monosomic alien addition lines from Raphanus sativus in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:27. [PMID: 39797977 DOI: 10.1007/s00122-024-04804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18). Subsequently, this Raphanobrassica was repeatedly backcrossed with radish to generate an aneuploid population. The identification of a complete set of MAALs (RR + 1C1-9, 2n = 19) was achieved using PCR with C chromosome-specific markers and fluorescence in situ hybridization, revealing extensive morphological variations, particularly in the shape and size of the fleshy root. A complete set of MAALs was achieved with only one chromosome from 1 to 9 linkage groups of the C genome. Compared with parental radish, most of the MAALs showed a noticeable delay in root swelling, particularly the RR-C6 that did not exhibit obvious root swelling throughout its entire growth stage. Cytological analysis indicated that the MAAL lines containing chromosome C8 exhibited the highest frequency of intergenomic chromosome pairings. Additionally, some introgressive radish lines derived from MAALs displayed a preference toward the donor B. oleracea or over-parent heterosis for some certain nutritional components. Overall, these MAALs serve as valuable germplasm for the genetic enhancement of radish and provide insights into the interactions between the R genome and C chromosomes.
Collapse
Affiliation(s)
- Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Qi Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Transcriptome analysis identifies differentially expressed genes involved in lignin biosynthesis in barley. Int J Biol Macromol 2023; 236:123940. [PMID: 36894063 DOI: 10.1016/j.ijbiomac.2023.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Lignin is an essential metabolite for plant growth but negatively affects the quality of forage barley. Genetic modification of quality traits to improve the forage digestibility requires an understanding of the molecular mechanism of lignin biosynthesis. RNA-Seq was used to quantify transcripts differentially expressed among leaf, stem and spike tissues from two barley genotypes. A total of 13,172 differentially expressed genes (DEGs) were identified, of which much more up-regulated DEGs were detected from the contrasting groups of leaf vs spike (L-S) and stem vs spike (S-S), and down-regulated DEGs were dominant in the group of stem vs leaf (S-L). 47 DEGs were successfully annotated to the monolignol pathway and six of them were candidate genes regulating the lignin biosynthesis. The qRT-PCR assay verified the expression profiles of the six candidate genes. Among them, four genes might positively regulate the lignin biosynthesis during forage barley development in terms of the consistency of their expression levels and changes of lignin content among the tissues, while the other two genes may have the reverse effects. These findings provide target genes for further investigations on molecular regulatory mechanisms of lignin biosynthesis and genetic resources for improvement of forage quality in barley molecular breeding programme.
Collapse
|
3
|
Qian C, Ji Z, Sun Y, Zhang M, Kan J, Xiao L, Liu J, Jin C, Yang W, Qi X. Lignin Biosynthesis in Postharvest Water Bamboo ( Zizania latifolia) Shoots during Cold Storage Is Regulated by RBOH-Mediated Reactive Oxygen Species Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3201-3209. [PMID: 36762739 DOI: 10.1021/acs.jafc.2c08073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lignification is a major cause of senescence in fresh shoots of water bamboo (Zizania latifolia), which is a popular vegetable in southeast Asia; however, its physiological and molecular mechanisms is less understood. In the present study, lignin content and transcriptome change in postharvested water bamboo shoots under cold storage were investigated. We found that lignin significantly accumulated in the epidermis of the shoots with the increase of firmness. In the cold storage shoots, the major up-regulated genes were involved in phenylpropanoid biosynthesis, plant-pathogen interactions, and starch and sucrose metabolism. The lignin biosynthesis genes PAL, 4CL, C4H, CCoAOMT, CCR, F5H, CAD, and POD family were up-regulated during cold storage, while HCT and C3H were down-regulated. The MAPK signaling pathway was also up-regulated and respiratory burst oxidase homologue (RBOH) genes were strongly up-regulated. Therefore, we investigated the RBOH gene family and their expression profile in water bamboo shoots. The results indicated that 10 ZlRBOHs were up-regulated in cold storage shoots. Diphenyleneiodonium chloride (DPI), an inhibitor of RBOH oxidase, significantly inhibited the expression of genes involved in lignin deposition and biosynthesis, while H2O2 enhanced these processes. These results suggest that lignification of water bamboo shoots is regulated by RBOH-mediated ROS signaling.
Collapse
Affiliation(s)
- Chunlu Qian
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhengjie Ji
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yan Sun
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Man Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Juan Kan
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Changhai Jin
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenfei Yang
- Huaiyin Institute of Agricultural Sciences in Xuhuai Area of Jiangsu, Huaian 223001, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
4
|
Meng L, Zhang X, Wang L, Liu H, Zhao Y, Yi K, Cui G, Yin X. Transcriptome profiling unveils the mechanism of phenylpropane biosynthesis in rhizome development of Caucasian clover. PLoS One 2021; 16:e0254669. [PMID: 34255805 PMCID: PMC8277049 DOI: 10.1371/journal.pone.0254669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
Caucasian clover is the only perennial herb of the genus Leguminous clover with underground rhizomes. However, we know very little about its development process and mechanism. Transcriptome studies were conducted on the roots of Caucasian clover without a rhizome (NR) at the young seedling stage and the fully developed rhizome, including the root neck (R1), main root (R2), horizontal root (R3), and rhizome bud (R4), of the tissues in the mature phase. Compared with the rhizome in the mature phase, NR had 893 upregulated differentially expressed genes (DEGs), most of which were enriched in 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'DNA replication' and 'biosynthesis of amino acids'. A higher number of transcription factors (AP2/ERF, C2H2 and FAR1) were found in NR. There were highly expressed genes for R4, such as auxin response factor SAUR, galacturonosyltransferase (GAUT), and sucrose synthase (SUS). Phenylpropanoids are very important for the entire process of rhizome development. We drew a cluster heat map of genes related to the phenylpropanoid biosynthesis pathway, in which the largest number of genes belonged to COMT, and most of them were upregulated in R4.
Collapse
Affiliation(s)
- Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lina Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haoyue Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Effect of Partial Excision of Early Taproots on Growth and Components of Hydroponic Carrots. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydroponics provides a stable root environment that can be easily controlled. In this paper, we investigated the effect of partial excision of early taproots of hydroponic carrots on their growth and components. Carrot taproots were excised after 30 days from sowing at 5 cm, 10 cm, and 15 cm from the stem base (C5, C10, and C15) and compared with nonexcised control plants. Time-course measurements revealed the taproot lengths of C10 and C15 plants gradually decreased. After 28 days of treatment, C5 taproot tips showed the most rounded shape among root-excised plants. Control plants possessed long taproots that were not enlarged at the site more than 15 cm from the stem base. Taproot fresh weight was lower in C5 plants and higher in C15 plants compared with controls. Although taproot sugar concentrations did not differ between treatments, total phenol concentration was higher in C5 taproots. These data suggest that partial removal of early taproots can regulate the shape and ingredients of hydroponic carrots.
Collapse
|
6
|
Guan L, Zhao M, Qian Y, Yu H, Xia J, Wu E. Phenotypic analysis combined with tandem mass tags (TMT) labeling reveal the heterogeneity of strawberry stolon buds. BMC PLANT BIOLOGY 2019; 19:505. [PMID: 31744478 PMCID: PMC6862844 DOI: 10.1186/s12870-019-2096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ramet propagation in strawberry (Fragaria × ananassa) is the most effective way in production. However, the lack of systematically phenotypic observations and high-throughput methods limits our ability to analyze the key factors regulating the heterogeneity in strawberry stolon buds. RESULTS From observation, we found that the axillary bud located in the first node quickly stepped into dormancy (DSB), after several bract and leaf buds were differentiated. The stolon apical meristem (SAM) degenerated as the new ramet leaf buds (RLB), and the new active axillary stolon buds (ASB) differentiated continually after the differentiation of the first leaf. Using the tandem mass tags (TMT) labeling method, a total of 7271 strawberry proteins were identified. Between ASB and DSB, the spliceosome DEPs, such as Ser/Arg-rich (SR) and heterogeneous nuclear ribonucleoprotein particle (hnRNP), showed the highest enrichment and high PPI connectivity. This indicated that the differences in DEPs (e.g., SF-3A and PK) at the transcriptional level may be causing the differences between the physiological statuses of ASB and DSB. As expected, the photosynthetic pre-form RLB mainly differentiated from ASB and DSB judging by the DEP enrichment of photosynthesis. However, there are still other specialized features of DEPs between RLB and DSB and between ASB and DSB. The DEPs relative to DNA duplication [e.g., minichromosome maintenance protein (MCM 2, 3, 4, 7)], provide a strong hint of functional gene duplication leading the bud heterogeneity between RLB and DSB. In addition, the top fold change DEP of LSH 10-like might be involved in the degeneration of SAM into RLBs, based on its significant function in modulating the plant shoot initiation. As for RLB/ASB, the phenylpropanoid biosynthesis pathway probably regulates the ramet axillary bud specialization, and further promotes the differentiation of xylem when ASB develops into a new stolon [e.g., cinnamyl alcohol dehydrogenase 1 (CAD1) and phenylalanine ammonia-lyase 1 (PAL1)]. CONCLUSIONS By using phenotypic observation combined with proteomic networks with different types of strawberry stolon buds, the definite dormancy phase of DSB was identified, and the biological pathways and gene networks that might be responsible for heterogeneity among different stolon buds in strawberry were also revealed.
Collapse
Affiliation(s)
- Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China.
| | - Yaming Qian
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Hongmei Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Jin Xia
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| | - Ejiao Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| |
Collapse
|
7
|
Transcriptome-based analysis of carotenoid accumulation-related gene expression in petals of Chinese cabbage ( Brassica rapa L.). 3 Biotech 2019; 9:274. [PMID: 31245238 DOI: 10.1007/s13205-019-1813-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
To identify genes associated with carotenoid accumulation in petals of Chinese cabbage, the composition and content of carotenoids were analyzed, and comparative transcriptome sequencing was performed between the yellow flower line, 92S105, and the orange flower line, 94C9. High-performance liquid chromatography (HPLC) revealed that petals of 92S105 were high in violaxanthin as well as lutein, whereas petals of 94C9 showed considerable levels of lutein and β-carotene. Transcriptome analysis showed that 3534 and 3833 genes were up- and down-regulated in 94C9, respectively. Among these differentially expressed genes (DEGs), many related to carotenoid accumulation were identified, including 12 carotenoid biosynthesis pathway genes, 4 transcription factor genes, and 1028 specifically expressed genes. β-carotene hydroxylase 1 (BrBCH1), BrBCH2, zeaxanthin epoxidase (BrZEP), and MYB transcription factor gene (BrGAMYB) were down-regulated in petals of 94C9 when compared with petals of 92S105, which caused β-carotene accumulation and may lead to orange petal color in 94C9. Expression levels of 20 DEGs were verified by qPCR and the results were highly consistent with those of transcriptome sequencing. Moreover, Gene Ontology (GO) enrichment analysis revealed that membrane, binding, and metabolic processes were the most significantly enriched GO terms in cellular component, molecular function, and biological process ontologies, respectively. In conclusion, our study analyzed the differences in composition and content of carotenoids between 92S105 and 94C9 and identified potential candidate genes related to carotenoid accumulation in petals, thereby creating a solid foundation for future studies on the mechanism regulating carotenoid accumulation in petals of Chinese cabbage.
Collapse
|
8
|
Yang YH, Li MJ, Yi YJ, Li RF, Dong C, Zhang ZY. The root transcriptome of Achyranthes bidentata and the identification of the genes involved in the replanting benefit. PLANT CELL REPORTS 2018; 37:611-625. [PMID: 29344683 DOI: 10.1007/s00299-018-2255-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The transcriptome profiling in replanting roots revealed that expression pattern changes of key genes promoted important metabolism pathways, antioxidant and pathogen defense systems, adjusted phytohormone signaling and inhibited lignin biosynthesis. The yield of the medicinal plant Achyranthes bidentata could be significantly increased when replanted into a field cultivated previously for the same crop, but the biological basis of this so-called "replanting benefit" is unknown. Here, the RNA-seq technique was used to identify candidate genes responsible for the benefit. The analysis of RNA-seq libraries prepared from mRNA extracted from the roots of first year planting (normal growth, NG) and second year replanting (consecutive monoculture, CM) yielded about 40.22 GB sequencing data. After de novo assembly, 87,256 unigenes were generated with an average length of 1060 bp. Among these unigenes, 55,604 were annotated with public databases, and 52,346 encoding sequences and 2881 transcription factors were identified. A contrast between the NG and CM libraries resulted in a set of 3899 differentially transcribed genes (DTGs). The DTGs related to the replanting benefit and their expression profiles were further analyzed by bioinformatics and qRT-PCR approaches. The major differences between the NG and CM transcriptomes included genes encoding products involved in glycolysis/gluconeogenesis, glutathione metabolism and antioxidant defense, in aspects of the plant/pathogen interaction, phytohormone signaling and phenylpropanoid biosynthesis. The indication was that replanting material enjoyed a stronger level of defense systems, a balance regulation of hormone signals and a suppression of lignin formation, thereby promoting root growth and development. The study provides considerable significant insights for a better understanding of the molecular mechanism of the replanting benefit and suggests their possible application in developing methods to reinforce the effects in medicinal plants.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China.
| | - Ming Jie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Cheng Dong
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Zhong Yi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China.
| |
Collapse
|