1
|
Hiratsu K, Nunoshiba T, Togawa Y, Yamauchi Y. Development of a thermostable Cre/lox-based gene disruption system and in vivo manipulations of the megaplasmid pTT27 in Thermus thermophilus HB27. Plasmid 2024; 131-132:102730. [PMID: 39089346 DOI: 10.1016/j.plasmid.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
We previously reported the development of a Cre/lox-based gene disruption system for multiple markerless gene disruption in Thermus thermophilus; however, it was a time-consuming method because it functioned at 50 °C, the minimum growth temperature of T. thermophilus HB27. In the present study, we improved this system by introducing random mutations into the cre-expressing plasmid, pSH-Cre. One of the resulting mutant plasmids, pSH-CreFM allowed us to remove selection marker genes by Cre-mediated recombination at temperatures up to 70 °C. By using the thermostable Cre/lox system with pSH-CreFM, we successfully constructed two valuable pTT27 megaplasmid mutant strains, a plasmid-free strain and β-galactosidase gene deletion strain, which were produced by different methods. The thermostable Cre/lox system improved the time-consuming nature of the original Cre/lox system, but it was not suitable for multiple markerless gene disruption in T. thermophilus because of its highly efficient induction of Cre-mediated recombination even at 70 °C. However, in vivo megaplasmid manipulations performed at 65 °C were faster and easier than with the original Cre/lox system. Collectively, these results indicate that this system is a powerful tool for engineering T. thermophilus megaplasmids.
Collapse
Affiliation(s)
- Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan.
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo 181-8585, Japan
| | - Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Yoshito Yamauchi
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
2
|
Jones CM, Parrish S, Nielsen DR. Exploiting Polyploidy for Markerless and Plasmid-Free Genome Engineering in Cyanobacteria. ACS Synth Biol 2021; 10:2371-2382. [PMID: 34530614 DOI: 10.1021/acssynbio.1c00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we describe a universal approach for plasmid-free genome engineering in cyanobacteria that exploits the polyploidy of their chromosomes as a natural counterselection system. Rather than being delivered via replicating plasmids, genes encoding for DNA modifying enzymes are instead integrated into essential genes on the chromosome by allelic exchange, as facilitated by antibiotic selection, a process that occurs readily and with only minor fitness defects. By virtue of the essentiality of these integration sites, full segregation is never achieved, with the strain instead remaining as a merodiploid so long as antibiotic selection is maintained. As a result, once the desired genome modification is complete, removal of antibiotic selection results in the gene encoding for the DNA modifying enzyme to then be promptly eliminated from the population. Proof of concept of this new and generalizable strategy is provided using two different site-specific recombination systems, CRE-lox and DRE-rox, in the fast-growing cyanobacterium Synechococcus sp. PCC 7002, as well as CRE-lox in the model cyanobacterium Synechocystis sp. PCC 6803. Reusability of the method, meanwhile, is demonstrated by constructing a high-CO2 requiring and markerless Δndh3 Δndh4 ΔbicA ΔsbtA mutant of Synechococcus sp. PCC 7002. Overall, this method enables the simple and efficient construction of stable and unmarked mutants in cyanobacteria without the need to develop additional shuttle vectors nor counterselection systems.
Collapse
Affiliation(s)
- Christopher M. Jones
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Sydney Parrish
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
4
|
Efficient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant. Sci Rep 2021; 11:9586. [PMID: 33953310 PMCID: PMC8100143 DOI: 10.1038/s41598-021-89029-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identified CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specificity of CaldoCas9, which revealed a preference for 5'-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.
Collapse
|
5
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Nitrate Respiration in Thermus thermophilus NAR1: from Horizontal Gene Transfer to Internal Evolution. Genes (Basel) 2020; 11:genes11111308. [PMID: 33158244 PMCID: PMC7694296 DOI: 10.3390/genes11111308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genes coding for enzymes of the denitrification pathway appear randomly distributed among isolates of the ancestral genus Thermus, but only in few strains of the species Thermus thermophilus has the pathway been studied to a certain detail. Here, we review the enzymes involved in this pathway present in T. thermophilus NAR1, a strain extensively employed as a model for nitrate respiration, in the light of its full sequence recently assembled through a combination of PacBio and Illumina technologies in order to counteract the systematic errors introduced by the former technique. The genome of this strain is divided in four replicons, a chromosome of 2,021,843 bp, two megaplasmids of 370,865 and 77,135 bp and a small plasmid of 9799 pb. Nitrate respiration is encoded in the largest megaplasmid, pTTHNP4, within a region that includes operons for O2 and nitrate sensory systems, a nitrate reductase, nitrate and nitrite transporters and a nitrate specific NADH dehydrogenase, in addition to multiple insertion sequences (IS), suggesting its mobility-prone nature. Despite nitrite is the final product of nitrate respiration in this strain, the megaplasmid encodes two putative nitrite reductases of the cd1 and Cu-containing types, apparently inactivated by IS. No nitric oxide reductase genes have been found within this region, although the NorR sensory gene, needed for its expression, is found near the inactive nitrite respiration system. These data clearly support that partial denitrification in this strain is the consequence of recent deletions and IS insertions in genes involved in nitrite respiration. Based on these data, the capability of this strain to transfer or acquire denitrification clusters by horizontal gene transfer is discussed.
Collapse
|
7
|
García‐Quintans N, Baquedano I, Blesa A, Verdú C, Berenguer J, Mencía M. A thermostable DNA primase-polymerase from a mobile genetic element involved in defence against environmental DNA. Environ Microbiol 2020; 22:4647-4657. [PMID: 32830367 PMCID: PMC7693054 DOI: 10.1111/1462-2920.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022]
Abstract
Primase-polymerases (Ppol) are one of the few enzymes able to start DNA synthesis on ssDNA templates. The role of Thermus thermophilus HB27 Ppol, encoded along a putative helicase (Hel) within a mobile genetic element (ICETh2), has been studied. A mutant lacking Ppol showed no effects on the replication of the element. Also, no apparent differences in the sensitivity to DNA damaging agents and other stressors or morphological changes in the mutant cells were detected. However, the mutants lacking Ppol showed an increase in two to three orders of magnitude in their transformation efficiency with plasmids and genomic DNA acquired from the environment (eDNA), independently of its origin and G + C content. In contrast, no significant differences with the wild type were detected when the cells received the DNA from other T. thermophilus partners in conjugation-like mating experiments. The similarities of this behaviour with that shown by mutants lacking the Argonaute (ThAgo) protein suggests a putative partnership Ppol-ThAgo in the DNA-DNA interference mechanism of defence, although other eDNA defence mechanisms independent of ThAgo cannot be discarded.
Collapse
Affiliation(s)
- Nieves García‐Quintans
- Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid‐Consejo Superior de Investigaciones CientíficasMadrid28049Spain
| | - Ignacio Baquedano
- Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid‐Consejo Superior de Investigaciones CientíficasMadrid28049Spain
| | - Alba Blesa
- Department of Biotechnology, Faculty of Experimental SciencesUniversidad Francisco de VitoriaMadrid28223Spain
| | - Carlos Verdú
- Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid‐Consejo Superior de Investigaciones CientíficasMadrid28049Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid‐Consejo Superior de Investigaciones CientíficasMadrid28049Spain
| | - Mario Mencía
- Centro de Biología Molecular Severo Ochoa (CBMSO)Universidad Autónoma de Madrid‐Consejo Superior de Investigaciones CientíficasMadrid28049Spain
| |
Collapse
|
8
|
Verdú C, Sanchez E, Ortega C, Hidalgo A, Berenguer J, Mencía M. A Modular Vector Toolkit with a Tailored Set of Thermosensors To Regulate Gene Expression in Thermus thermophilus. ACS OMEGA 2019; 4:14626-14632. [PMID: 31528818 PMCID: PMC6740178 DOI: 10.1021/acsomega.9b02107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 05/02/2023]
Abstract
Modular plasmid architectures have shown to be a very useful resource to standardize, build, share, and compare biological parts and functional vectors, and are being applied in an increasing number of microorganisms. Here, we present a modular plasmid toolkit for Thermus thermophilus, a species considered as a workhorse for biotechnology and a model for high-temperature biology. Apart from integrating improved versions of already existing parts, we have characterized specific promoters and developed a thermosensor-based palette that restricts the expression to Thermus and, at the same time, controls protein expression in this organism in a temperature-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | - José Berenguer
- E-mail: . Tel.: +34 911964498. Fax: +34 911964420 (J.B.)
| | - Mario Mencía
- E-mail: . Tel.: +34 911964664.
Fax: +34 911964420 (M.M.)
| |
Collapse
|
9
|
Togawa Y, Shiotani S, Kato Y, Ezaki K, Nunoshiba T, Hiratsu K. Development of a supF-based mutation-detection system in the extreme thermophile Thermus thermophilus HB27. Mol Genet Genomics 2019; 294:1085-1093. [PMID: 30968247 DOI: 10.1007/s00438-019-01565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/03/2019] [Indexed: 01/07/2023]
Abstract
Thermus thermophilus (T. thermophilus) HB27 is an extreme thermophile that grows optimally at 65-72 °C. Heat-induced DNA lesions are expected to occur at a higher frequency in the genome of T. thermophilus than in those of mesophiles; however, the mechanisms underlying the maintenance of genome integrity at high temperatures remain poorly understood. The study of mutation spectra has become a powerful approach to understanding the molecular mechanisms responsible for DNA repair and mutagenesis in mesophilic species. Therefore, we developed a supF-based system to detect a broad spectrum of mutations in T. thermophilus. This system was validated by measuring spontaneous mutations in the wild type and a udgA, B double mutant deficient in uracil-DNA glycosylase (UDG) activity. We found that the mutation frequency of the udgA, B strain was 4.7-fold higher than that of the wild type and G:C→A:T transitions dominated, which was the most reasonable for the mutator phenotype associated with the loss of UDG function in T. thermophilus. These results show that this system allowed for the rapid analysis of mutations in T. thermophilus, and may be useful for studying the molecular mechanisms responsible for DNA repair and mutagenesis in this extreme thermophile.
Collapse
Affiliation(s)
- Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Shiori Shiotani
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Yuki Kato
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Kazune Ezaki
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
10
|
Li H. Selection-free markerless genome manipulations in the polyploid bacterium Thermus thermophilus. 3 Biotech 2019; 9:148. [PMID: 30944795 DOI: 10.1007/s13205-019-1682-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
A genome manipulation approach based on double-crossover homologous recombination was developed in the polyploid model organism Thermus thermophilus HB27 without the use of any selectable marker. The method was established and optimized by targeting the megaplasmid-encoded β-glucosidase gene bgl. When linear and supercoiled forms of marker-free suicide vector were used for transformations, the frequencies of obtaining apparent Bgl- mutant were 10- 5 and 10- 3, respectively; while the frequency could reach 10- 2 when transformation with concatemer form of the same vector. All randomly selected Bgl- colonies from the transformations were found to be true bgl knockout mutants. Thus, markerless gene deletion mutants could be constructed in T. thermophilus by the direct selection-free method. The functionality of this approach was further demonstrated by deletion of one chromosomal locus (TTC_0340-0341) as well as by generation of a reporter strain for the phytoene synthase promoter (PcrtB), homozygous mutants of the both targets could also be detected with a frequency of approximately 10- 2. During the genome modification process, heterozygous cells carrying two different alleles at a same locus (e.g., bgl and pyrE) could also be generated. However, in the absence of selection pressure, these strains could rapidly convert to homozygous strains containing only one of the two alleles. This indicated that allele segregation could occur in the heterozygous T. thermophilus cells, which probably explained the ease of obtaining homozygous gene deletion mutants with high frequency (10- 2) in the polyploid genomic background, as after the mutant allele had been introduced to the target region, allele segregation would lead to homozygous mutant cells. This marker-free genome manipulation approach does not require phenotype-based screens, and is applicable in gene deletion and tagging applications.
Collapse
Affiliation(s)
- Haijuan Li
- College of Biological and Environmental Engineering, Xi'an University, No. 168 South Taibai Road, Xi'an, 710065 China
| |
Collapse
|