1
|
Epigenetically-regulated RPN2 gene influences lymphocyte activation and is involved in pathogenesis of rheumatoid arthritis. Gene 2021; 810:146059. [PMID: 34740730 DOI: 10.1016/j.gene.2021.146059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND To identify RA-associated genes and to ascertain epigenetic factors and functional mechanisms underlying RA pathogenesis. METHODS Peripheral blood mononuclear cells (PBMC) transcriptome- and proteome- wide gene expressions were profiled in a case-control study sample. Differentially expressed genes (DEGs) were discovered and validated independently. In-house PBMC genome-wide SNP genotyping data, miRNA expression data and DNA methylation data in the same sample were utilized to identify SNPs [expression quantitative trait locus (eQTLs) and protein quantitative trait locus (pQTLs)], miRNAs, and DNA methylation positions (DMPs) regulating key DEG of interest. Lentivirus transfection was conducted to study the effects of RPN2 on T lymphocyte activation, proliferation, apoptosis, and inflammatory cytokine expression. Rpn2 protein level in plasma was quantitated by ELISA to assess its performance in discriminating RA cases and controls. RESULTS Twenty-two DEGs were discovered in PBMCs. The most significant DEG, i.e., RPN2, was validated to be up-regulated with RA in PBMCs. A complex regulatory network for RPN2 gene expression in PBMCs was constructed, which consists of 38 eQTL and 53 pQTL SNPs, 3 miRNAs and 2 DMPs. Besides, RPN2 expression was significantly up-regulated with RA in primary T lymphocytes, as well as in PHA-activated T lymphocytes. RPN2 over-expression in T lymphocytes significantly inhibited apoptosis and IL-4 expression and promoted proliferation and activation. PBMCs-expressed RPN2 mRNA and plasma Rpn2 protein demonstrated superior and modest performances in discriminating RA cases and controls, respectively. CONCLUSIONS RPN2 gene influences T lymphocyte growth and activation and is involved in the pathogenesis of RA. Rpn2 may serve as a novel protein biomarker for RA diagnosis.
Collapse
|
2
|
Eosinophil microRNAs Play a Regulatory Role in Allergic Diseases Included in the Atopic March. Int J Mol Sci 2020; 21:ijms21239011. [PMID: 33260893 PMCID: PMC7730597 DOI: 10.3390/ijms21239011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: The atopic march is defined by the increased prevalence of allergic diseases after atopic dermatitis onset. In fact, atopic dermatitis is believed to play an important role in allergen sensitization via the damaged skin barrier, leading to allergic diseases such as allergic asthma and allergic rhinitis. The eosinophil, a pro-inflammatory cell that contributes to epithelial damage, is one of the various cells recruited in the inflammatory reactions characterizing these diseases. Few studies were conducted on the transcriptome of this cell type and even less on their specific microRNA (miRNA) profile, which could modulate pathogenesis of allergic diseases and clinical manifestations post-transcriptionally. Actually, their implication in allergic diseases is not fully understood, but they are believed to play a role in inflammation-related patterns and epithelial cell proliferation. (2) Methods: Next-generation sequencing was performed on RNA samples from eosinophils of individuals with atopic dermatitis, atopy, allergic rhinitis and asthma to obtain differential counts of primary miRNA (pri-miRNA); these were also analyzed for asthma-related phenotypes such as forced expiratory volume in one second (FEV1), immunoglobulin E (IgE) and provocative concentration of methacholine inducing a 20% fall in forced expiratory volume in 1 s (PC20) levels, as well as FEV1 to forced vital capacity (FEV1/FVC) ratio. (3) Results: Eighteen miRNAs from eosinophils were identified to be significantly different between affected individuals and unaffected ones. Based on counts from these miRNAs, individuals were then clustered into groups using Ward's method on Euclidian distances. Groups were found to be explained by asthma diagnosis, familial history of respiratory diseases and allergic rhinitis as well as neutrophil counts. (4) Conclusions: The 18 differential miRNA counts for the studying phenotypes allow a better understanding of the epigenetic mechanisms underlying the development of the allergic diseases included in the atopic march.
Collapse
|
3
|
Rotival M, Siddle KJ, Silvert M, Pothlichet J, Quach H, Quintana-Murci L. Population variation in miRNAs and isomiRs and their impact on human immunity to infection. Genome Biol 2020; 21:187. [PMID: 32731901 PMCID: PMC7391576 DOI: 10.1186/s13059-020-02098-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of the immune system, yet their variation and contribution to intra- and inter-population differences in immune responses is poorly characterized. RESULTS We generate 977 miRNA-sequencing profiles from primary monocytes from individuals of African and European ancestry following activation of three TLR pathways (TLR4, TLR1/2, and TLR7/8) or infection with influenza A virus. We find that immune activation leads to important modifications in the miRNA and isomiR repertoire, particularly in response to viral challenges. These changes are much weaker than those observed for protein-coding genes, suggesting stronger selective constraints on the miRNA response to stimulation. This is supported by the limited genetic control of miRNA expression variability (miR-QTLs) and the lower occurrence of gene-environment interactions, in stark contrast with eQTLs that are largely context-dependent. We also detect marked differences in miRNA expression between populations, which are mostly driven by non-genetic factors. On average, miR-QTLs explain approximately 60% of population differences in expression of their cognate miRNAs and, in some cases, evolve adaptively, as shown in Europeans for a miRNA-rich cluster on chromosome 14. Finally, integrating miRNA and mRNA data from the same individuals, we provide evidence that the canonical model of miRNA-driven transcript degradation has a minor impact on miRNA-mRNA correlations, which are, in our setting, mainly driven by co-transcription. CONCLUSION Together, our results shed new light onto the factors driving miRNA and isomiR diversity at the population level and constitute a useful resource for evaluating their role in host differences of immunity to infection.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Martin Silvert
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Sorbonne Universités, École Doctorale Complexité du Vivant, 75005 Paris, France
| | - Julien Pothlichet
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Present Address: DIACCURATE, Institut Pasteur, 75015 Paris, France
| | - Hélène Quach
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Present Address: UMR7206, Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Chair Human Genomics and Evolution, Collège de France, 75005 Paris, France
| |
Collapse
|
4
|
Huang L, Deng FY, Lei SF. Global correlation analysis for miRNA and protein expression profiles in human peripheral blood mononuclear cells. Mol Biol Rep 2020; 47:5295-5304. [PMID: 32613399 DOI: 10.1007/s11033-020-05608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/20/2020] [Indexed: 11/26/2022]
Abstract
Micro-RNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression at protein level by protein translation inhibition or mRNA degradation. However, the global correlation patterns between miRNA and protein have not been studied yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), this study conducted multiple types of miRNA-protein correlation analyses in 28 Chinese subjects. Pearson correlation analysis showed a negative but relatively small global correlation in each subject. Among the 371 constructed miRNA-protein pairs (60 unique miRNAs, and 150 unique proteins), 10.5% of pairs have significant correlations (P < 0.05). Some highlighted miRNAs (e.g., hsa-miR-590-3p, hsa-miR-520d-3p) exerted significant regulation on multiple genes. Simultaneously, some genes (e.g., HSP90B1) were targeted by multiple miRNAs. The target genes associated with miRNAs tend to enrich in some important GO terms: biological processes (e.g., gene expression, protein binding and RNA binding), and molecular functions (protein binding: GO:0005515; RNA binding: GO:0003723). The results provided a global view of the miRNA-protein expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/proteins and better understanding of the pathogenesis underlying PBMC related diseases.
Collapse
Affiliation(s)
- Liang Huang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
He P, Mo XB, Lei SF, Deng FY. Epigenetically regulated co-expression network of genes significant for rheumatoid arthritis. Epigenomics 2019; 11:1601-1612. [PMID: 31693422 DOI: 10.2217/epi-2019-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify epigenetically regulated network of genes in peripheral blood mononuclear cells significant for rheumatoid arthritis (RA). Methods: Differentially expressed genes (DEGs) and their associated differentially expressed miRNAs and differentially methylated positions (DMPs) were identified. Causal inference test (CIT) identified the causal regulation chains. The analyses, for example, weighted gene co-expression network (WGCNA), protein-protein interaction and functional enrichment, evaluated interaction patterns among the DEGs and the associated epigenetic factors. Results: A total of 181 DEGs were identified. The DEGs were significantly regulated by DMPs and/or differentially expressed miRNAs. Causal inference test analyses identified 18 causal chains of DMP-DEG-RA and 16 intermediate DEGs enriched in 'protein kinase inhibitor activity'. BTN2A1 was co-expressed with other 9 intermediate genes and 11 known RA-associated genes and played a pivotal role in the co-expression network. Conclusion: Epigenetically regulated network of genes in peripheral blood mononuclear cells (PBMC) contributed to RA. The causal DMPs and key intermediate genes may serve as potential biomarkers for RA.
Collapse
Affiliation(s)
- Pei He
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
6
|
Xiong P, Schneider RF, Hulsey CD, Meyer A, Franchini P. Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Sci Rep 2019; 9:13848. [PMID: 31554838 PMCID: PMC6761260 DOI: 10.1038/s41598-019-50124-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in the post-transcriptional control of messenger RNA (mRNA). These miRNA-mRNA regulatory networks are present in nearly all organisms and contribute to development, phenotypic divergence, and speciation. To examine the miRNA landscape of cichlid fishes, one of the most species-rich families of vertebrates, we profiled the expression of both miRNA and mRNA in a diverse set of cichlid lineages. Among these, we found that conserved miRNAs differ from recently arisen miRNAs (i.e. lineage specific) in average expression levels, number of target sites, sequence variability, and physical clustering patterns in the genome. Furthermore, conserved miRNA target sites tend to be enriched at the 5' end of protein-coding gene 3' UTRs. Consistent with the presumed regulatory role of miRNAs, we detected more negative correlations between the expression of miRNA-mRNA functional pairs than in random pairings. Finally, we provide evidence that novel miRNA targets sites are enriched in genes involved in protein synthesis pathways. Our results show how conserved and evolutionarily novel miRNAs differ in their contribution to the genomic landscape and highlight their particular evolutionary roles in the adaptive diversification of cichlids.
Collapse
Affiliation(s)
- Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), 24105 Kiel, Germany
| | - C Darrin Hulsey
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
7
|
He P, Wu LF, Bing PF, Xia W, Wang L, Xie FF, Lu X, Lei SF, Deng FY. SAMD9 is a (epi-) genetically regulated anti-inflammatory factor activated in RA patients. Mol Cell Biochem 2019; 456:135-144. [DOI: 10.1007/s11010-019-03499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/19/2019] [Indexed: 12/29/2022]
|