1
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
2
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
3
|
Chen X, Wen K, Zhou X, Zhu M, Liu Y, Jin J, Nellist CF. The devastating oomycete phytopathogen Phytophthora cactorum: Insights into its biology and molecular features. MOLECULAR PLANT PATHOLOGY 2023; 24:1017-1032. [PMID: 37144631 PMCID: PMC10423333 DOI: 10.1111/mpp.13345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Phytophthora cactorum is one of the most economically important soilborne oomycete pathogens in the world. It infects more than 200 plant species spanning 54 families, most of which are herbaceous and woody species. Although traditionally considered to be a generalist, marked differences of P. cactorum isolates occur in degree of pathogenicity to different hosts. As the impact of crop loss caused by this species has increased recently, there has been a tremendous increase in the development of new tools, resources, and management strategies to study and combat this devastating pathogen. This review aims to integrate recent molecular biology analyses of P. cactorum with the current knowledge of the cellular and genetic basis of its growth, development, and host infection. The goal is to provide a framework for further studies of P. cactorum by highlighting important biological and molecular features, shedding light on the functions of pathogenicity factors, and developing effective control measures. TAXONOMY P. cactorum (Leb. & Cohn) Schröeter: kingdom Chromista; phylum Oomycota; class Oomycetes; order Peronosporales; family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 200 plant species in 154 genera representing 54 families. Economically important host plants include strawberry, apple, pear, Panax spp., and walnut. DISEASE SYMPTOMS The soilborne pathogen often causes root, stem, collar, crown, and fruit rots, as well as foliar infection, stem canker, and seedling damping off.
Collapse
Affiliation(s)
- Xiao‐Ren Chen
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Ke Wen
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xue Zhou
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Ming‐Yue Zhu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Yang Liu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Jing‐Hao Jin
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | | |
Collapse
|
4
|
Gogoi A, Rossmann SL, Lysøe E, Stensvand A, Brurberg MB. Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry. Front Microbiol 2023; 14:1214924. [PMID: 37465018 PMCID: PMC10351607 DOI: 10.3389/fmicb.2023.1214924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon L. Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
5
|
Zhou X, Wen K, Huang SX, Lu Y, Liu Y, Jin JH, Kale SD, Chen XR. Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete Phytophthora cactorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040883. [PMID: 36840230 PMCID: PMC9964705 DOI: 10.3390/plants12040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 05/22/2023]
Abstract
Blight caused by Phytophthora pathogens has a devastating impact on crop production. Phytophthora species secrete an array of effectors, such as Phytophthora cactorum-Fragaria (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in Phytophthora cactorum. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.
Collapse
Affiliation(s)
- Xue Zhou
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Ke Wen
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Shen-Xin Huang
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Yi Lu
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Yang Liu
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Jing-Hao Jin
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Shiv D. Kale
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Xiao-Ren Chen
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
6
|
Tao M, Zhao Y, Hu T, Zhang Q, Feng H, Lu Y, Guo Z, Yang B. Screening of Alfalfa Varieties Resistant to Phytophthora cactorum and Related Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2023; 12:702. [PMID: 36840050 PMCID: PMC9966651 DOI: 10.3390/plants12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Alfalfa is one of the most important legume forages in the world. Root rot caused by soil-borne pathogens severely restricts the production of alfalfa. The knowledge of the interaction between alfalfa and root rot-pathogens is still lacking in China. Phytophthora cactorum was isolated from symptomatic seedlings of an alfalfa field in Nanjing with high levels of damping-off. We observed the different infection stages of P. cactorum on alfalfa, and found that the purified P. cactorum strain was aggressive in causing alfalfa seed and root rot. The infecting hyphae penetrated the epidermal cells and wrapped around the alfalfa roots within 48 h. By evaluating the resistance of 37 alfalfa cultivars from different countries to P. cactorum, we found Weston is a resistant variety, while Longdong is a susceptible variety. We further compared the activities of various enzymes in the plant antioxidant enzyme system between Weston and Longdong during P. cactorum infection, as well as gene expression associated with plant hormone biosynthesis and response pathways. The results showed that the disease-resistant variety Weston has stronger antioxidant enzyme activity and high levels of SA-responsive PR genes, when compared to the susceptible variety Longdong. These findings highlighted the process of interaction between P. cactorum and alfalfa, as well as the mechanism of alfalfa resistance to P. cactorum, which provides an important foundation for breeding resistant alfalfa varieties, as well as managing Phytophthora-caused alfalfa root rot.
Collapse
Affiliation(s)
- Menghuan Tao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxue Hu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Zhang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Piombo E, Kelbessa BG, Sundararajan P, Whisson SC, Vetukuri RR, Dubey M. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents. Front Microbiol 2023; 14:1076522. [PMID: 37032886 PMCID: PMC10080066 DOI: 10.3389/fmicb.2023.1076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Oomycetes cause several damaging diseases of plants and animals, and some species also act as biocontrol agents on insects, fungi, and other oomycetes. RNA silencing is increasingly being shown to play a role in the pathogenicity of Phytophthora species, either through trans-boundary movement of small RNAs (sRNAs) or through expression regulation of infection promoting effectors. Methods To gain a wider understanding of RNA silencing in oomycete species with more diverse hosts, we mined genome assemblies for Dicer-like (DCL), Argonaute (AGO), and RNA dependent RNA polymerase (RDRP) proteins from Phytophthora plurivora, Ph. cactorum, Ph. colocasiae, Pythium oligandrum, Py. periplocum, and Lagenidium giganteum. Moreover, we sequenced small RNAs from the mycelium stage in each of these species. Results and discussion Each of the species possessed a single DCL protein, but they differed in the number and sequence of AGOs and RDRPs. SRNAs of 21nt, 25nt, and 26nt were prevalent in all oomycetes analyzed, but the relative abundance and 5' base preference of these classes differed markedly between genera. Most sRNAs mapped to transposons and other repeats, signifying that the major role for RNA silencing in oomycetes is to limit the expansion of these elements. We also found that sRNAs may act to regulate the expression of duplicated genes. Other sRNAs mapped to several gene families, and this number was higher in Pythium spp., suggesting a role of RNA silencing in regulating gene expression. Genes for most effector classes were the source of sRNAs of variable size, but some gene families showed a preference for specific classes of sRNAs, such as 25/26 nt sRNAs targeting RxLR effector genes in Phytophthora species. Novel miRNA-like RNAs (milRNAs) were discovered in all species, and two were predicted to target transcripts for RxLR effectors in Ph. plurivora and Ph. cactorum, indicating a putative role in regulating infection. Moreover, milRNAs from the biocontrol Pythium species had matches in the predicted transcriptome of Phytophthora infestans and Botrytis cinerea, and L. giganteum milRNAs matched candidate genes in the mosquito Aedes aegypti. This suggests that trans-boundary RNA silencing may have a role in the biocontrol action of these oomycetes.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Department of Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| |
Collapse
|
8
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Midgley KA, van den Berg N, Swart V. Unraveling Plant Cell Death during Phytophthora Infection. Microorganisms 2022; 10:microorganisms10061139. [PMID: 35744657 PMCID: PMC9229607 DOI: 10.3390/microorganisms10061139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Oomycetes form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms, of which several hundred organisms are considered among the most devastating plant pathogens—especially members of the genus Phytophthora. Phytophthora spp. have a large repertoire of effectors that aid in eliciting a susceptible response in host plants. What is of increasing interest is the involvement of Phytophthora effectors in regulating programed cell death (PCD)—in particular, the hypersensitive response. There have been numerous functional characterization studies, which demonstrate Phytophthora effectors either inducing or suppressing host cell death, which may play a crucial role in Phytophthora’s ability to regulate their hemi-biotrophic lifestyle. Despite several advances in techniques used to identify and characterize Phytophthora effectors, knowledge is still lacking for some important species, including Phytophthora cinnamomi. This review discusses what the term PCD means and the gap in knowledge between pathogenic and developmental forms of PCD in plants. We also discuss the role cell death plays in the virulence of Phytophthora spp. and the effectors that have so far been identified as playing a role in cell death manipulation. Finally, we touch on the different techniques available to study effector functions, such as cell death induction/suppression.
Collapse
|
10
|
Zhang ZH, Jin JH, Sheng GL, Xing YP, Liu W, Zhou X, Liu YQ, Chen XR. A Small Cysteine-Rich Phytotoxic Protein of Phytophthora capsici Functions as Both Plant Defense Elicitor and Virulence Factor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:891-903. [PMID: 33819070 DOI: 10.1094/mpmi-01-21-0025-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Small cysteine-rich (SCR) proteins, including fungal avirulence proteins, play important roles in pathogen-plant interactions. SCR protein-encoding genes have been discovered in the genomes of Phytophthora pathogens but their functions during pathogenesis remain obscure. Here, we report the characterization of one Phytophthora capsici SCR protein (namely, SCR82) with similarity to Phytophthora cactorum phytotoxic protein PcF. The scr82 gene has 10 allelic sequences in the P. capsici population. Homologs of SCR82 were not identified in fungi or other organisms but in Phytophthora relative species. Initially, scr82 was weakly expressed during the mycelium, sporangium, and zoospore stages but quickly upregulated when the infection initiated. Both ectopic expression of SCR82 and recombinant yeast-expressed protein (rSCR82) caused cell death on tomato leaves. Upon treatment, rSCR82 induced plant defense responses, including the induction of defense gene expression, reactive oxygen species burst, and callose deposition. Knockout of scr82 in P. capsici by CRISPR/Cas9 severely impaired its virulence on host plants and significantly reduced its resistance against oxidative stress. Inversely, its overexpression increased the pathogen's virulence and tolerance to oxidative stress. Our results collectively demonstrate that SCR82 functions as both an important virulence factor and plant defense elicitor, which is conserved across Phytophthora spp.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zi-Hui Zhang
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Jing-Hao Jin
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Gui-Lin Sheng
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Yu-Ping Xing
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Wang Liu
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Xue Zhou
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Yi-Qing Liu
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| | - Xiao-Ren Chen
- College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
| |
Collapse
|
11
|
Pánek M, Střížková I, Zouhar M, Kudláček T, Tomšovský M. Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms 2021; 9:345. [PMID: 33578718 PMCID: PMC7916502 DOI: 10.3390/microorganisms9020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
A population study of Phytophthora cactorum was performed using ddRADseq sequence variation analysis completed by the analysis of effector genes-RXLR6, RXLR7 and SCR113. The population structure was described by F-statistics, heterozygosity, nucleotide diversity, number of private alleles, number of polymorphic sites, kinship coefficient and structure analysis. The population of P. cactorum in Europe seems to be structured into host-associated groups. The isolates from woody hosts are structured into four groups described previously, while isolates from strawberry form another group. The groups are diverse in effector gene composition and the frequency of outbreeding. When populations from strawberry were analysed, both asexual reproduction and occasional outbreeding confirmed by gene flow among distinct populations were detected. Therefore, distinct P. cactorum populations differ in the level of heterozygosity. The data support the theory of the mixed-mating model for P. cactorum, comprising frequent asexual behaviour and inbreeding alternating with occasional outbreeding. Because P. cactorum is not indigenous to Europe, such variability is probably caused by multiple introductions of different lineages from the area of its original distribution, and the different histories of sexual recombination and host adaptation of particular populations.
Collapse
Affiliation(s)
- Matěj Pánek
- Crop Research Institute, Team of Ecology and Diagnostics of Fungal Plant Pathogens, Drnovská 507/73, 161 06 Praha, Czech Republic;
| | - Ivana Střížková
- Crop Research Institute, Team of Ecology and Diagnostics of Fungal Plant Pathogens, Drnovská 507/73, 161 06 Praha, Czech Republic;
| | - Miloslav Zouhar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00 Praha, Czech Republic;
| | - Tomáš Kudláček
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic; (T.K.); (M.T.)
| | - Michal Tomšovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic; (T.K.); (M.T.)
| |
Collapse
|
12
|
Liu X, Li B, Yang Y, Cai J, Shi T, Zheng X, Huang G. Pathogenic Adaptations Revealed by Comparative Genome Analyses of Two Colletotrichum spp., the Causal Agent of Anthracnose in Rubber Tree. Front Microbiol 2020; 11:1484. [PMID: 32793128 PMCID: PMC7385191 DOI: 10.3389/fmicb.2020.01484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum siamense and Colletotrichum australisinense cause Colletotrichum leaf disease that differ in their symptoms in rubber tree (Hevea brasiliensis), and pathogenicity of these two fungal species is also not identical on different cultivars of rubber tree. This divergence is often attributed to pathogen virulence factors, namely carbohydrate-active enzymes (CAZymes), secondary metabolites (SM), and small-secreted protein (SSP) effectors. The draft genome assembly and functional annotation of potential pathogenicity genes of both species obtained here provide an important and timely genomic resource for better understanding the biology and lifestyle of Colletotrichum spp. This should pave the way for designing more efficient disease control strategies in plantations of rubber tree. In this study, the genes associated with these categories were manually annotated in the genomes of C. australisinense GX1655 and C. siamense HBCG01. Comparative genomic analyses were performed to address the evolutionary relationships among these gene families in the two species. First, the size of genome assembly, number of predicted genes, and some of the functional categories differed significantly between the two congeners. Second, from the comparative genomic analyses, we identified some specific genes, certain higher abundance of gene families associated with CAZymes, CYP450, and SM in the genome of C. siamense, and Nep1-like proteins (NLP) in the genome of C. australisinense.
Collapse
Affiliation(s)
- Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Xiaolan Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, China
| |
Collapse
|
13
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
14
|
Wang H, Wang Y, Hou X, Xiong B. Bioelectronic Nose Based on Single-Stranded DNA and Single-Walled Carbon Nanotube to Identify a Major Plant Volatile Organic Compound (p-Ethylphenol) Released by Phytophthora Cactorum Infected Strawberries. NANOMATERIALS 2020; 10:nano10030479. [PMID: 32155991 PMCID: PMC7153259 DOI: 10.3390/nano10030479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
The metabolic activity in plants or fruits is associated with volatile organic compounds (VOCs), which can help identify the different diseases. P-ethylphenol has been demonstrated as one of the most important VOCs released by the Phytophthora cactorum (P. cactorum) infected strawberries. In this study, a bioelectronic nose based on a gas biosensor array and signal processing model was developed for the noninvasive diagnostics of the P. cactorum infected strawberries, which could overcome the limitations of the traditional spectral analysis methods. The gas biosensor array was fabricated using the single-wall carbon nanotubes (SWNTs) immobilized on the surface of field-effect transistor, and then non-covalently functionalized with different single-strand DNAs (ssDNA) through π–π interaction. The characteristics of ssDNA-SWNTs were investigated using scanning electron microscope, atomic force microscopy, Raman, UV spectroscopy, and electrical measurements, indicating that ssDNA-SWNTs revealed excellent stability and repeatability. By comparing the responses of different ssDNA-SWNTs, the sensitivity to P-ethylphenol was significantly higher for the s6DNA-SWNTs than other ssDNA-SWNTs, in which the limit of detection reached 0.13% saturated vapor of P-ethylphenol. However, s6DNA-SWNTs can still be interfered with by other VOCs emitted by the strawberries in the view of poor selectivity. The bioelectronic nose took advantage of the different sensitivities of different gas biosensors to different VOCs. To improve measure precision, all ssDNA-SWNTs as a gas biosensor array were applied to monitor the different VOCs released by the strawberries, and the detecting data were processed by neural network fitting (NNF) and Gaussian process regression (GPR) with high accuracy.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: or (H.W.); (B.X.); Tel.: +86-010-62811680 (B.X.)
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiaopeng Hou
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: or (H.W.); (B.X.); Tel.: +86-010-62811680 (B.X.)
| |
Collapse
|
15
|
Astapchuk I, Yakuba G, Nasonov A. Pathocomplex of root rot of apple tree in nurseries and young orchards of the South of Russia. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202506002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Root rot poses a serious threat to the main fruit crop domestic apple in nurseries and young orchards. Obtaining healthy planting material, free from root pathogens and root rot, is an especially priority task in conditions of intensive production. In the process of analyzing the affected plants from nurseries and young orchards at four sampling points, pathogens of apple root rot from 11 genera were identified and 431 isolates were extracted. The most common causative agents of apple root rot seedlings in the entire studied sample were species of the genus Fusarium spp. Soil micromycetes such as Rhizoctonia spp., Cladosporium spp., Cylinrocarpon spp., and oomycetes from the genus Pythium were rare. The composition and occurrence of species were heterogeneous at different points in the studied region. Phomopsis mali (Schulzer & Sacc.) Died., Cytospora spp., Alternaria alternate (Fr.) Keissl., and Aspergillus niger Tiegh. have been associated with root rot of seedlings and young apple trees.
Collapse
|
16
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
17
|
Toljamo A, Blande D, Munawar M, Kärenlampi SO, Kokko H. Expression of the GAF Sensor, Carbohydrate-Active Enzymes, Elicitins, and RXLRs Differs Markedly Between Two Phytophthora cactorum Isolates. PHYTOPATHOLOGY 2019; 109:726-735. [PMID: 30412010 DOI: 10.1094/phyto-04-18-0136-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.
Collapse
Affiliation(s)
- Anna Toljamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Daniel Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mustafa Munawar
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sirpa O Kärenlampi
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
18
|
Armitage AD, Lysøe E, Nellist CF, Lewis LA, Cano LM, Harrison RJ, Brurberg MB. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS One 2018; 13:e0202305. [PMID: 30278048 PMCID: PMC6168125 DOI: 10.1371/journal.pone.0202305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022] Open
Abstract
The oomycete pathogen Phytophthora cactorum causes crown rot, a major disease of cultivated strawberry. We report the draft genome of P. cactorum isolate 10300, isolated from symptomatic Fragaria x ananassa tissue. Our analysis revealed that there are a large number of genes encoding putative secreted effectors in the genome, including nearly 200 RxLR domain containing effectors, 77 Crinklers (CRN) grouped into 38 families, and numerous apoplastic effectors, such as phytotoxins (PcF proteins) and necrosis inducing proteins. As in other Phytophthora species, the genomic environment of many RxLR and CRN genes differed from core eukaryotic genes, a hallmark of the two-speed genome. We found genes homologous to known Phytophthora infestans avirulence genes including Avr1, Avr3b, Avr4, Avrblb1 and AvrSmira2 indicating effector sequence conservation between Phytophthora species of clade 1a and clade 1c. The reported P. cactorum genome sequence and associated annotations represent a comprehensive resource for avirulence gene discovery in other Phytophthora species from clade 1 and, will facilitate effector informed breeding strategies in other crops.
Collapse
Affiliation(s)
| | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Ås, Norway
| | | | | | - Liliana M. Cano
- University of Florida, UF/IFAS Indian River Research and Education Center, Fort Pierce, Florida, United States of America
- The Sainsbury Laboratory, Norwich, United Kingdom
| | | | - May B. Brurberg
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Ås, Norway
- Norwegian University of Life Sciences (NMBU), Department of Plant Sciences, Ås, Norway
| |
Collapse
|