1
|
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg. Foods 2022; 11:foods11233777. [PMID: 36496584 PMCID: PMC9741282 DOI: 10.3390/foods11233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus.
Collapse
|
2
|
Biswas Q, Purohit A, Kumar A, Rakshit D, Maiti D, Das B, Bhadra RK. Genetic and mutational analysis of virulence traits and their modulation in an environmental toxigenic Vibrio cholerae non-O1/non-O139 strain, VCE232. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35113781 DOI: 10.1099/mic.0.001135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The ctxAB and tcpA genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and Vibrio pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of V. cholerae O1 and O139. V. cholerae isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic V. cholerae non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of V. cholerae O1 strains, including organization of the VPI-1 locus, ctxAB, tcpA and toxT genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed ΔtoxT, ΔtoxR and ΔtoxTΔtoxR deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the toxT and toxR genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either toxT or toxR gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 ΔtoxR mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic V. cholerae non-O1/non-O139 strain.
Collapse
Affiliation(s)
- Quoelee Biswas
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Ayushi Purohit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dipayan Rakshit
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Diganta Maiti
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
3
|
Fu H, Yu P, Liang W, Kan B, Peng X, Chen L. Virulence, Resistance, and Genomic Fingerprint Traits of Vibrio cholerae Isolated from 12 Species of Aquatic Products in Shanghai, China. Microb Drug Resist 2020; 26:1526-1539. [PMID: 33156741 PMCID: PMC7757592 DOI: 10.1089/mdr.2020.0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a waterborne bacterium and can cause epidemic cholera disease worldwide. Continuous monitoring of V. cholerae contamination in aquatic products is imperative for assuring food safety. In this study, we determined virulence, antimicrobial susceptibility, heavy metal tolerance, and genomic fingerprints of 370 V. cholerae isolates recovered from 12 species of commonly consumed aquatic products collected from July to September of 2018 in Shanghai, China. Among the species, Leiocassis longirostris, Ictalurus punetaus, Ophiocephalus argus Cantor, and Pelteobagrus fulvidraco were for the first time detected for V. cholerae. Toxin genes ctxAB, tcpA, ace, and zot were absent from all the V. cholerae isolates. However, high occurrence of virulence-associated genes was detected, such as hapA (82.7%), hlyA (81.4%), rtxCABD (81.4%, 24.3%, 80.3%, and 80.8%, respectively), and tlh (80.5%). Approximately 62.2% of the 370 V. cholerae isolates exhibited resistance to streptomycin, followed by ampicillin (60.3%), rifampicin (53.8%), trimethoprim (38.4%), and sulfamethoxazole-trimethoprim (37.0%). Moreover, ∼57.6% of the isolates showed multidrug resistant phenotypes with 57 resistance profiles, which was significantly different among the 12 species (multiple antimicrobial resistance index, p < 0.001). Meanwhile, high incidence of tolerance to heavy metals Hg2+ (69.5%), Ni2+ (32.4%), and Cd2+ (30.8%) was observed among the isolates. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting profiles classified the 370 V. cholerae isolates into 239 different ERIC-genotypes, which demonstrated diverse genomic variation among the isolates. Overall, the results in this study meet the increasing need of food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Huiyu Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Weili Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
The Impact of Water Intrusion on Pathogenic Vibrio Species to Inland Brackish Waters of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186781. [PMID: 32957572 PMCID: PMC7558382 DOI: 10.3390/ijerph17186781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
The estuary is the ecological niche of pathogenic Vibrio spp. as it provides abundant organic and inorganic nutrients from seawater and rivers. However, little is known about the ecology of these Vibrio species in the inland brackish water area. In this study, their co-occurrence and relationships to key environmental constraints (salinity and temperature) in the Hun-Tai River of China were examined using the most probable number polymerase chain reaction (MPN-PCR) approach. We hereby report 2-year continuous surveillance based on six water indices of the Hun-Tai River. The results showed that seawater intrusion maximally reached inland as far as 26.5 km for the Hun-Tai River. Pathogenic Vibrio spp. were detected in 21.9% of the water samples. In particular, V. cholerae, V. parahaemolyticus, and V. vulnificus were isolated in 10 (10.4%), 20 (20.8.5%), and 2 (2.08%) samples, respectively. All V. parahaemolyticus strains were tdh gene negative, 10% were positive for the trh gene. Multi-locus sequence typing (MLST) divided V. parahaemolyticus strains into 12 sequence types (STs) for the Hun-Tai River. Five STs were respectively present in various locations along the Hun-Tai River. The PCR assay for detecting six virulence genes and Vibrio seventh pandemic island I and II revealed three genotypes in 12 V. cholerae isolates. The results of our study showed that seawater intrusion and salinity have profound effects on the distribution of pathogenic Vibrio spp. in the inland river, suggesting a potential health risk associated with the waters of the Hun-Tai River used for irrigation and drinking.
Collapse
|
5
|
Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136113. [PMID: 31864001 DOI: 10.1016/j.scitotenv.2019.136113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
An increase in human Vibrio spp. infections has been linked to climate change related events, in particular to seawater warming and heatwaves. However, there is a distinct lack of research of pathogenic Vibrio spp. occurrences in the temperate North Sea, one of the fastest warming seas globally. Particularly in the German Bight, Vibrio investigations are still scarce. This study focuses on the spatio-temporal quantification and pathogenic characterization of V. parahaemolyticus, V. vulnificus and V. cholerae over the course of 14 months. Species-specific MPN-PCR (Most probable number - polymerase chain reaction) conducted on selectively enriched surface water samples revealed seasonal patterns of all three species with increased abundances during summer months. The extended period of warm seawater coincided with prolonged Vibrio spp. occurrences in the German Bight. Temperature and nitrite were the factors explaining variations in Vibrio spp. abundances after generalized additive mixed models. The specific detection of pathogenic markers via PCR revealed trh-positive V. parahaemolyticus, pathogenic V. vulnificus (nanA, manIIA, PRXII) and V. cholerae serotype O139 presence. Additionally, spatio-temporally varying virulence profiles of V. cholerae with multiple accessory virulence-associated genes, such as the El Tor variant hemolysin (hlyAET), acyltransferase of the repeats-in-toxin cluster (rtxC), Vibrio 7th pandemic island II (VSP-II), Type III Secretion System (TTSS) and the Cholix Toxin (chxA) were detected. Overall, this study highlights that environmental human pathogenic Vibrio spp. comprise a reservoir of virulence-associated genes in the German Bight, especially in estuarine regions. Due to their known vast genetic plasticity, we point to the possible emergence of highly pathogenic V. cholerae strains. Particularly, the presence of V. cholerae serotype O139 is unusual and needs urgent continuous surveillance. Given the predictions of further warming and more frequent heatwave events, human pathogenic Vibrio spp. should be seriously considered as a developing risk to human health in the German Bight.
Collapse
Affiliation(s)
- Sidika Hackbusch
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany.
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Luis Gimenez
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany; School of Ocean Sciences, Bangor University, LL50 5AB Menai Bridge, Anglesey, UK
| | - Hilke Döpke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
6
|
Xu M, Fu H, Chen D, Shao Z, Zhu J, Alali WQ, Chen L. Simple Visualized Detection Method of Virulence-Associated Genes of Vibrio cholerae by Loop-Mediated Isothermal Amplification. Front Microbiol 2019; 10:2899. [PMID: 31921074 PMCID: PMC6932958 DOI: 10.3389/fmicb.2019.02899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Vibrio cholerae is a leading waterborne pathogenic bacterium worldwide. It can cause human cholera that is still pandemic in developing nations. Detection of V. cholerae contamination in drinking water and aquatic products is imperative for assuring food safety. In this study, a simple, sensitive, specific, and visualized method was developed based on loop-mediated isothermal amplification (LAMP) (designated sssvLAMP) to detect virulence-associated (ctxA, tcpA, hapA, mshA, pilA, and tlh) and species-specific (lolB) genes of V. cholerae. Three pairs of oligonucleotide primers (inner, outer, and loop primers) were designed and or synthesized to target each of these genes. The optimal conditions of the sssvLAMP method was determined, and one-step sssvLAMP reaction was performed at 65°C for 40 min. Positive results were simply read by the naked eye via color change (from orange to light green) under the visible light, or by the production of green fluorescence under the UV light (260 nm). The sssvLAMP method was more efficient in detecting 6.50 × 101-6.45 × 104-fold low number of V. cholerae cells, and more sensitive in V. cholerae genomic DNA (1.36 × 10-2-4.42 × 10-6 ng/reaction) than polymerase chain reaction (PCR) method. Among 52 strains of V. cholerae and 50 strains of non-target species (e.g., other Vibrios and common pathogens) examined, the sensitivity and specificity of the sssvLAMP method were 100% for all the target genes. Similar high efficiency of the method was observed when tested with spiked samples of water and aquatic products, as well as human stool specimens. Water from various sources and commonly consumed fish samples were promptly screened by this simple and efficient visualized method and diversified variation in the occurrence of the target genes was observed. V. cholerae strains could be mostly detected by the presence of hapA and tlh alone or in combination with other genes, indicating a variable risk of potentially pathogenic non-O1/O139 strains in edible food products. This novel LAMP method can be a promising tool to address the increasing need of food safety control of aquatic products.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huiyu Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dailing Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zehuai Shao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Walid Q. Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Safat, Kuwait
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|