1
|
Rakhshaninejad M, Fathian M, Shirkoohi R, Barzinpour F, Gandomi AH. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach. BMC Bioinformatics 2024; 25:33. [PMID: 38253993 PMCID: PMC10810249 DOI: 10.1186/s12859-024-05657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer remains a major public health challenge worldwide. The identification of accurate biomarkers is critical for the early detection and effective treatment of breast cancer. This study utilizes an integrative machine learning approach to analyze breast cancer gene expression data for superior biomarker and drug target discovery. Gene expression datasets, obtained from the GEO database, were merged post-preprocessing. From the merged dataset, differential expression analysis between breast cancer and normal samples revealed 164 differentially expressed genes. Meanwhile, a separate gene expression dataset revealed 350 differentially expressed genes. Additionally, the BGWO_SA_Ens algorithm, integrating binary grey wolf optimization and simulated annealing with an ensemble classifier, was employed on gene expression datasets to identify predictive genes including TOP2A, AKR1C3, EZH2, MMP1, EDNRB, S100B, and SPP1. From over 10,000 genes, BGWO_SA_Ens identified 1404 in the merged dataset (F1 score: 0.981, PR-AUC: 0.998, ROC-AUC: 0.995) and 1710 in the GSE45827 dataset (F1 score: 0.965, PR-AUC: 0.986, ROC-AUC: 0.972). The intersection of DEGs and BGWO_SA_Ens selected genes revealed 35 superior genes that were consistently significant across methods. Enrichment analyses uncovered the involvement of these superior genes in key pathways such as AMPK, Adipocytokine, and PPAR signaling. Protein-protein interaction network analysis highlighted subnetworks and central nodes. Finally, a drug-gene interaction investigation revealed connections between superior genes and anticancer drugs. Collectively, the machine learning workflow identified a robust gene signature for breast cancer, illuminated their biological roles, interactions and therapeutic associations, and underscored the potential of computational approaches in biomarker discovery and precision oncology.
Collapse
Affiliation(s)
- Morteza Rakhshaninejad
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Mohammad Fathian
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Boulevard, Tehran, 1419733141, Tehran, Iran
| | - Farnaz Barzinpour
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, 2007, NSW, Australia
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary
| |
Collapse
|
2
|
Xu Y, Huang F, Guo W, Feng K, Zhu L, Zeng Z, Huang T, Cai YD. Characterization of chromatin accessibility patterns in different mouse cell types using machine learning methods at single-cell resolution. Front Genet 2023; 14:1145647. [PMID: 36936430 PMCID: PMC10014730 DOI: 10.3389/fgene.2023.1145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Chromatin accessibility is a generic property of the eukaryotic genome, which refers to the degree of physical compaction of chromatin. Recent studies have shown that chromatin accessibility is cell type dependent, indicating chromatin heterogeneity across cell lines and tissues. The identification of markers used to distinguish cell types at the chromosome level is important to understand cell function and classify cell types. In the present study, we investigated transcriptionally active chromosome segments identified by sci-ATAC-seq at single-cell resolution, including 69,015 cells belonging to 77 different cell types. Each cell was represented by existence status on 20,783 genes that were obtained from 436,206 active chromosome segments. The gene features were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a list by Monte Carlo feature selection. Such list was further analyzed by incremental feature selection (IFS) method, yielding essential genes, classification rules and an efficient random forest (RF) classifier. To improve the performance of the optimal RF classifier, its features were further processed by autoencoder, light gradient boosting machine and IFS method. The final RF classifier with MCC of 0.838 was constructed. Some marker genes such as H2-Dmb2, which are specifically expressed in antigen-presenting cells (e.g., dendritic cells or macrophages), and Tenm2, which are specifically expressed in T cells, were identified in this study. Our analysis revealed numerous potential epigenetic modification patterns that are unique to particular cell types, thereby advancing knowledge of the critical functions of chromatin accessibility in cell processes.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Lin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|