1
|
Pekpak Şahinoğlu E, Oren AC, Şahinoğlu B, Keskin Ö, Damar Ç, Akbayram S. Clinical, laboratory, and molecular characteristics of patients with spondyloenchondrodysplasia: a case series study. Eur J Pediatr 2025; 184:152. [PMID: 39853520 DOI: 10.1007/s00431-025-05982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Spondyloenchondrodysplasia (SPENCD) is a rare genetic disorder characterized with skeletal dysplasia, immune dysregulation, and neurological impairment. Patients diagnosed with SPENCD at a single pediatric hematology center were included in the study. The patients' clinical characteristics, symptoms at presentation, imaging and laboratory results, and genetic analysis results were collected retrospectively from their files. This study evaluated nine patients diagnosed with SPENCD, eight of whom had autoimmune manifestations at presentation. Common findings included autoimmune hemolytic anemia, hypothyroidism, and elevated transaminase levels. All patients exhibited short stature and skeletal abnormalities. Neurological symptoms were present in six patients, with intracranial calcifications detected in five. Recurrent bacterial and viral infections, including respiratory tract infections, were prevalent. The NM_001611.5 (ACP5): c.772_790del p.(Ser258TrpfsTer39) frameshift variant was identified in all patients. Two patients died during follow-up. CONCLUSION The study highlights the clinical characteristics and challenges associated with SPENCD. The findings underscore the need for comprehensive management strategies to address the multifaceted complications associated with SPENCD. WHAT IS KNOWN • Spondyloenchondrodysplasia (SPENCD) is classified as a type-1 interferonopathy resulting from homozygous mutations in the ACP5 gene, which leads to a deficiency in tartrate-resistant acid phosphatase. • The clinical features associated with this condition encompass skeletal dysplasia, spastic paraparesis, short stature, thrombocytopenia, hemolytic anemia, and systemic lupus erythematosus like autoimmune manifestations. Additionally, patients may experience intracranial calcifications and recurrent infections. WHAT IS NEW • SPENCD exhibits similarities with other type I interferonopathies, including increased levels of type I interferon and specific neurological symptoms; however, it also displays distinct characteristics such as intellectual disability and behaviors associated with autism spectrum disorder. • Despite the rare occurence of the condition and the small number of patients reported here the findings underscore the complexity of managing this condition, particularly in the context of consanguinity and the associated risks of severe complications and mortality.
Collapse
Affiliation(s)
| | - Ayse Ceyda Oren
- Pediatric Hematology and Oncology, Liv Hospital, Gaziantep, Turkey
| | | | - Özlem Keskin
- Pediatric Immunology and Allergy, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Çağrı Damar
- Pediatric Radiology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Sinan Akbayram
- Pediatric Hematology and Oncology, Liv Hospital, Gaziantep, Turkey
| |
Collapse
|
2
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Gernez Y, Narula M, Cepika AM, Valdes Camacho J, Hoyte EG, Mouradian K, Glader B, Singh D, Sathi B, Rao L, Tolin AL, Weinberg KI, Lewis DB, Bacchetta R, Weinacht KG. Case report: Refractory Evans syndrome in two patients with spondyloenchondrodysplasia with immune dysregulation treated successfully with JAK1/JAK2 inhibition. Front Immunol 2024; 14:1328005. [PMID: 38347954 PMCID: PMC10859398 DOI: 10.3389/fimmu.2023.1328005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Biallelic mutations in the ACP5 gene cause spondyloenchondrodysplasia with immune dysregulation (SPENCDI). SPENCDI is characterized by the phenotypic triad of skeletal dysplasia, innate and adaptive immune dysfunction, and variable neurologic findings ranging from asymptomatic brain calcifications to severe developmental delay with spasticity. Immune dysregulation in SPENCDI is often refractory to standard immunosuppressive treatments. Here, we present the cases of two patients with SPENCDI and recalcitrant autoimmune cytopenias who demonstrated a favorable clinical response to targeted JAK inhibition over a period of more than 3 years. One of the patients exhibited steadily rising IgG levels and a bone marrow biopsy revealed smoldering multiple myeloma. A review of the literature uncovered that approximately half of the SPENCDI patients reported to date exhibited increased IgG levels. Screening for multiple myeloma in SPENCDI patients with rising IgG levels should therefore be considered.
Collapse
Affiliation(s)
- Yael Gernez
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Mansi Narula
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Juanita Valdes Camacho
- Division of Allergy and Immunology, Department of Pediatrics, Louisiana State University (LSU) Health, Shreveport, LA, United States
| | - Elisabeth G. Hoyte
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Kirsten Mouradian
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Bertil Glader
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Deepika Singh
- Division of Rheumatology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Bindu Sathi
- Division of Hematology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Latha Rao
- Division of Hematology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Ana L. Tolin
- Division of Immunology, Department of Pediatrics, Hospital Pediatrico Dr. Humberto Notti, Mendoza, Argentina
| | - Kenneth I. Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - David B. Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Katja G. Weinacht
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|