1
|
Henningsen E, Sallam AH, Matny O, Szinyei T, Figueroa M, Steffenson BJ. Rpg7: A New Gene for Stem Rust Resistance from Hordeum vulgare ssp. spontaneum. PHYTOPATHOLOGY 2021; 111:548-558. [PMID: 32880513 DOI: 10.1094/phyto-08-20-0325-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat stem rust (causal organism: Puccinia graminis f. sp. tritici) is an important fungal disease that causes significant yield losses in barley. The deployment of resistant cultivars is the most effective means of controlling this disease. Stem rust evaluations of a diverse collection of wild barley (Hordeum vulgare ssp. spontaneum) identified two Jordanian accessions (WBDC094 and WBDC238) with resistance to a virulent pathotype (P. graminis f. sp. tritici HKHJC) from the United States. To elucidate the genetics of stem rust resistance, both accessions were crossed to the susceptible landrace Hiproly. Segregation ratios of F2 and F3 progeny indicated that a single dominant gene confers resistance to P. graminis f. sp. tritici HKHJC. Molecular mapping of the resistance locus was performed in the Hiproly/WBDC238 F2 population based on 3,329 single-nucleotide polymorphism markers generated by genotyping-by-sequencing. Quantitative trait locus analysis positioned the resistance gene to the long arm of chromosome 3H between the physical/genetic positions of 683.8 Mbp/172.9 cM and 693.7 Mbp/176.0 cM. Because this resistance gene is novel, it was assigned the new gene locus symbol of Rpg7 with a corresponding allele symbol of Rpg7.i. At the seedling stage, Rpg7 confers resistance against a number of other important P. graminis f. sp. tritici pathotypes from the United States (MCCFC, QCCJB, and TTTTF) and Africa (TTKSK) as well as an isolate (92-MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis) from Minnesota. The resistance conferred by Rpg7 can be readily transferred into breeding programs because of its simple inheritance and clear phenotypic expression.
Collapse
Affiliation(s)
- Eva Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Ahmad H Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
2
|
Solanki S, Richards J, Ameen G, Wang X, Khan A, Ali H, Stangel A, Tamang P, Gross T, Gross P, Fetch TG, Brueggeman RS. Characterization of genes required for both Rpg1 and rpg4-mediated wheat stem rust resistance in barley. BMC Genomics 2019; 20:495. [PMID: 31200635 PMCID: PMC6570958 DOI: 10.1186/s12864-019-5858-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Puccinia graminis f. sp. tritici (Pgt) race TTKSK and its lineage pose a threat to barley production world-wide justifying the extensive efforts to identify, clone, and characterize the rpg4-mediated resistance locus (RMRL), the only effective resistance to virulent Pgt races in the TTKSK lineage. The RMRL contains two nucleotide-binding domain and leucine-rich repeat (NLR) resistance genes, Rpg5 and HvRga1, which are required for resistance. The two NLRs have head-to-head genome architecture with one NLR, Rpg5, containing an integrated C-terminal protein kinase domain, characteristic of an "integrated sensory domain" resistance mechanism. Fast neutron mutagenesis of line Q21861 was utilized in a forward genetics approach to identify genetic components that function in the RMRL or Rpg1 resistance mechanisms, as Q21861 contains both genes. A mutant was identified that compromises both RMRL and Rpg1-mediated resistances and had stunted seedling roots, designated required for P. graminis resistance 9 (rpr9). RESULTS The rpr9 mutant generated in the Q21861 background was crossed with the Swiss landrace Hv584, which carries RMRL but contains polymorphism across the genome compared to Q21861. To map Rpr9, a Hv584 x rpr9 F6:7 recombinant inbred line (RIL) population was developed. The RIL population was phenotyped with Pgt race QCCJB. The Hv584 x rpr9 RIL population was genotyped with the 9 k Illumina Infinium iSelect marker panel, producing 2701 polymorphic markers. A robust genetic map consisting of 563 noncosegregating markers was generated and used to map Rpr9 to an ~ 3.4 cM region on barley chromosome 3H. The NimbleGen barley exome capture array was utilized to capture rpr9 and wild type Q21861 exons, followed by Illumina sequencing. Comparative analysis, resulting in the identification of a 1.05 Mbp deletion at the chromosome 3H rpr9 locus. The identified deletion contains ten high confidence annotated genes with the best rpr9 candidates encoding a SKP1-like 9 protein and a F-box family protein. CONCLUSION Genetic mapping and exome capture rapidly identified candidate gene/s that function in RMRL and Rpg1 mediated resistance pathway/s. One or more of the identified candidate rpr9 genes are essential in the only two known effective stem rust resistance mechanisms, present in domesticated barley.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70803 USA
| | - Gazala Ameen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Xue Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Atiya Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Harris Ali
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Alex Stangel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Patrick Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas G. Fetch
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Robert S. Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| |
Collapse
|
3
|
Turuspekov Y, Ormanbekova D, Rsaliev A, Abugalieva S. Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC PLANT BIOLOGY 2016; 16 Suppl 1:6. [PMID: 26821649 PMCID: PMC4895317 DOI: 10.1186/s12870-015-0686-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR. RESULTS Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage. CONCLUSIONS Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the identification of highly significant QTL for the SR resistance at the HA phase of growth on chromosome 6H. On the other hand, no significant QTL was detected at the SM phase, assuming that for a successful GWASmapping experiment a larger size population with more diverse genetic background should be tested. Obtained results provide additional information towards better understanding of SR resistance in barley.
Collapse
Affiliation(s)
| | | | - Aralbek Rsaliev
- Research Institute for Biological Safety Problems, Gvardeiskiy vil, Dzhambul region, Kazakhstan.
| | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.
| |
Collapse
|
4
|
Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ. Genetic Characterization of Resistance to Wheat Stem Rust Race TTKSK in Landrace and Wild Barley Accessions Identifies the rpg4/Rpg5 Locus. PHYTOPATHOLOGY 2015; 105:99-109. [PMID: 25084303 DOI: 10.1094/phyto-12-13-0340-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Race TTKSK of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) threatens the production of wheat and barley worldwide because of its broad-spectrum virulence on many widely grown cultivars. Sources of resistance against race TTKSK were recently identified in several barley landraces (Hordeum vulgare subsp. vulgare) and wild barley accessions (H. vulgare subsp. spontaneum). The objectives of this study were to characterize the inheritance of resistance to wheat stem rust race TTKSK in four barley landraces (Hv501, Hv545, Hv602, and Hv612) and two wild barley (WBDC213 and WBDC345) accessions, map the resistance genes, and determine the allelic relationships among the genes in these accessions and the previously described rpg4/Rpg5 locus. Resistant accessions were crossed with the susceptible cv. Steptoe and resulting F3 populations were evaluated for resistance to race TTKSK at the seedling stage. Segregation of F3 families in populations involving the resistance sources of Hv501, Hv545, Hv612, WBDC213, and WBDC345 fit a 1:2:1 ratio for homozygous resistant (HR)/segregating (SEG)/homozygous susceptible (HS) progenies (with χ2=2.27 to 5.87 and P=0.053 to 0.321), indicating that a single gene confers resistance to race TTKSK. Segregation of F3 families in cross Steptoe/Hv602 did not fit a 1:2:1 ratio (HR/SEG/HS of 20:47:43 with χ2=11.95 and P=0.003), indicating that more than one gene is involved in imparting resistance to race TTKSK. Bulked segregant analysis using >1,500 single-nucleotide polymorphism markers positioned a resistance locus in all six populations on chromosome 5HL in very close proximity to the known location of the rpg4/Rpg5 complex locus. Allelism tests were conducted by making crosses among resistant accessions Hv501, Hv545, and Hv612 and also Q21861 with the rpg4/Rpg5 complex. No segregation was observed in F2 families inoculated with race TTKSK, demonstrating that all Hv lines carry the same allele for resistance and that it resides at or very near the rpg4/Rpg5 locus. Phenotype evaluations of the six barley accessions with wheat stem rust race QCCJ revealed resistant infection types (ITs) at a low incubation temperature and susceptible ITs at a high incubation temperature, similar to Q21861, which carries the temperature-sensitive gene rpg4. The accessions also exhibited low ITs against the rye stem rust isolate 92-MN-90, suggesting that they also carry Rpg5. This result was confirmed through molecular analysis, which revealed that all six barley accessions contain the serine threonine protein kinase domain that confers Rpg5 resistance. These results indicate that cultivated barley is extremely vulnerable to African stem rust races such as TTKSK because even these diverse selections of landrace and wild barley accessions carry only one locus for resistance.
Collapse
|
5
|
Al-Daoude A, Shoaib A, Al-Shehadah E, Jawhar M, Arabi MIE. Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction. THE PLANT PATHOLOGY JOURNAL 2014; 30:425-431. [PMID: 25506307 PMCID: PMC4262295 DOI: 10.5423/ppj.nt.04.2014.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 06/04/2023]
Abstract
Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.
Collapse
Affiliation(s)
- Antonious Al-Daoude
- Corresponding author. Phone) +00963-11-2132580, FAX) 00963-11-6112289, E-mail)
| | | | | | | | | |
Collapse
|
6
|
Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:407-18. [PMID: 23216085 DOI: 10.1094/mpmi-06-12-0146-r] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rpg4 gene confers recessive resistance to several races of wheat stem rust (Puccinia graminis f. sp. tritici) and Rpg5 provides dominant resistance against isolates of the rye stem rust (P. graminis f. sp. secalis) in barley. The rpg4 and Rpg5 genes are tightly linked on chromosome 5H, and positional cloning using high-resolution populations clearly separated the genes, unambiguously identifying Rpg5; however, the identity of rpg4 remained unclear. High-resolution genotyping of critical recombinants at the rpg4/Rpg5 locus, designated here as rpg4-mediated resistance locus (RMRL) delimited two distinct yet tightly linked loci required for resistance, designated as RMRL1 and RMRL2. Utilizing virus-induced gene silencing, each gene at RMRL1, i.e., HvRga1 (a nucleotide-binding site leucine-rich repeat [NBS-LRR] domain gene), Rpg5 (an NBS-LRR-protein kinase domain gene), and HvAdf3 (an actin depolymerizing factor-like gene), was individually silenced followed by inoculation with P. graminis f. sp. tritici race QCCJ. Silencing each gene changed the reaction type from incompatible to compatible, indicating that all three genes are required for rpg4-mediated resistance. This stem rust resistance mechanism in barley follows the emerging theme of unrelated pairs of genetically linked NBS-LRR genes required for specific pathogen recognition and resistance. It also appears that actin cytoskeleton dynamics may play an important role in determining resistance against several races of stem rust in barley.
Collapse
Affiliation(s)
- X Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 2012; 33:328-43. [PMID: 22985089 DOI: 10.3109/07388551.2012.716809] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515 Mb, short life cycle, and inbreeding nature. Its two species, Setaria italica (domesticated) and Setaria viridis (wild progenitor), have characteristics that classify them as excellent model systems to examine several aspects of architectural, evolutionary, and physiological importance in Panicoid grasses especially the biofuel crops such as switchgrass and napiergrass. Foxtail millet is a staple crop used extensively for food and fodder in parts of Asia and Africa. In its long history of cultivation, it has been adapted to arid and semi-arid areas of Asia, North Africa, South and North America. Foxtail millet has one of the largest collections of cultivated as well as wild-type germplasm rich with phenotypic variations and hence provides prospects for association mapping and allele-mining of elite and novel variants to be incorporated in crop improvement programs. Most of the foxtail millet accessions can be primarily abiotic stress tolerant particularly to drought and salinity, and therefore exploiting these agronomic traits can enhance its efficacy in marker-aided breeding as well as in genetic engineering for abiotic stress tolerance. In addition, the release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtail millet as well as in related Panicoid bioenergy grasses.
Collapse
Affiliation(s)
- Charu Lata
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
8
|
Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y. Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. PHYTOPATHOLOGY 2009; 99:1135-41. [PMID: 19740026 DOI: 10.1094/phyto-99-10-1135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Race TTKSK (Ug99) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) is a serious threat to both wheat and barley production worldwide because of its wide virulence on many cultivars and rapid spread from eastern Africa. Line Q21861 is one of the most resistant barleys known to this race. To elucidate the genetics of resistance in this line, we evaluated the Q21861/SM89010 (Q/SM) doubled-haploid population for reaction to race TTKSK at the seedling stage. Segregation for resistance:susceptibility in Q/SM doubled-haploid lines fit a 1:1 ratio (58:71 with chi2=1.31 and P=0.25), indicating that a single gene in Q21861 confers resistance to race TTKSK. In previous studies, a recessive gene (rpg4) and a partially dominant gene (Rpg5) were reported to control resistance to P. graminis f. sp. tritici race QCCJ and P. graminis f. sp. secalis isolate 92-MN-90, respectively, in Q21861. These resistance genes co-segregate with each other in the Q/SM population and were mapped to the long arm of chromosome 5H. Resistance to race TTKSK also co-segregated with resistance to both rusts, indicating that the gene conferring resistance to race TTKSK also lies at the rpg4/Rpg5 locus. This result was confirmed through the molecular analysis of recombinants previously used to characterize loci conferring resistance to race QCCJ and isolate 92-MN-90. The 70-kb region contains Rpg5 (a nucleotide-binding site leucine-rich repeat serine/threonine-protein kinase gene), rpg4 (an actin depolymerizing factor-like gene), and two other genes of unidentified function. Research is underway to resolve which of the genes are required for conferring resistance to race TTKSK. Regardless, the simple inheritance should make Q21861 a valuable source of TTKSK resistance in barley breeding programs.
Collapse
Affiliation(s)
- B J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
9
|
GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 2009; 9:255-62. [PMID: 19280236 DOI: 10.1007/s10142-009-0120-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
The barley sdw1/denso gene not only controls plant height but also yield and quality. The sdw1/denso gene was mapped to the long arm of chromosome 3H. Comparative genomic analysis revealed that the sdw1/denso gene was located in the syntenic region of the rice semidwarf gene sd1 on chromosome 1. The sd1 gene encodes a gibberellic acid (GA)-20 oxidase enzyme. The gene ortholog of rice sd1 was isolated from barley using polymerase chain reaction. The barley and rice genes showed a similar gene structure consisting of three exons and two introns. Both genes share 88.3% genomic sequence similarity and 89% amino acid sequence identity. A single nucleotide polymorphism was identified in intron 2 between barley varieties Baudin and AC Metcalfe with Baudin known to contain the denso semidwarf gene. The single nucleotide polymorphism (SNP) marker was mapped to chromosome 3H in a doubled haploid population of Baudin x AC Metcalfe with 178 DH lines. Quantitative trait locus analysis revealed that plant height cosegregated with the SNP. The sdw1/denso gene in barley is the most likely ortholog of the sd1 in rice. The result will facilitate understanding of the molecular mechanism controlling semidwarf phenotype and provide a diagnostic marker for selection of semidwarf gene in barley.
Collapse
|
10
|
The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci U S A 2008; 105:14970-5. [PMID: 18812501 DOI: 10.1073/pnas.0807270105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated the barley stem rust resistance genes Rpg5 and rpg4 by map-based cloning. These genes are colocalized on a 70-kb genomic region that was delimited by recombination. The Rpg5 gene consists of an unusual structure encoding three typical plant disease resistance protein domains: nucleotide-binding site, leucine-rich repeat, and serine threonine protein kinase. The predicted RPG5 protein has two putative transmembrane sites possibly involved in membrane binding. The gene is expressed at low but detectable levels. Posttranscriptional gene silencing using VIGS resulted in a compatible reaction with a normally incompatible stem rust pathogen. Allele sequencing also validated the candidate Rpg5 gene. Allele and recombinant sequencing suggested that the probable rpg4 gene encoded an actin depolymerizing factor-like protein. Involvement of actin depolymerizing factor genes in nonhost resistance has been documented, but discovery of their role in gene-for-gene interaction would be novel and needs to be further substantiated.
Collapse
|
11
|
Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:261-72. [PMID: 18542913 DOI: 10.1007/s00122-008-0771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/08/2008] [Indexed: 05/13/2023]
Abstract
We previously mapped mRNA transcript abundance traits (expression-QTL or eQTL) using the Barley1 Affymetrix array and 'whole plant' tissue from 139 progeny of the Steptoe x Morex (St/Mx) reference barley mapping population. Of the 22,840 probesets (genes) on the array, 15,987 reported transcript abundance signals that were suitable for eQTL analysis, and this revealed a genome-wide distribution of 23,738 significant eQTLs. Here we have explored the potential of using these mRNA abundance eQTL traits as surrogates for the identification of candidate genes underlying the interaction between barley and the wheat stem rust fungus Puccinia graminis f. sp. tritici. We re-analysed quantitative 'resistance phenotype' data collected on this population in 1990/1991 and identified six loci associated with barley's reaction to stem rust. One of these coincided with the major stem rust resistance locus Rpg1, that we had previously positionally cloned using this population. Correlation analysis between phenotype values for rust infection and mRNA abundance values reported by the 22,840 GeneChip probe sets placed Rpg1, which is on the Barley1 GeneChip, in the top five candidate genes for the major QTL on chromosome 7H corresponding to the location of Rpg1. A second co-located with the rpg4/Rpg5 stem rust resistance locus that has been mapped in a different population and the remaining four were novel. Correlation analyses identified candidate genes for the rpg4/Rpg5 locus on chromosome 5H. By combining our data with additional published mRNA profiling data sets, we identify a putative sensory transduction histidine kinase as a strong candidate for a novel resistance locus on chromosome 2H and compile candidate gene lists for the other three loci.
Collapse
Affiliation(s)
- Arnis Druka
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brueggeman R, Drader T, Kleinhofs A. The barley serine/threonine kinase gene Rpg1 providing resistance to stem rust belongs to a gene family with five other members encoding kinase domains. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1147-58. [PMID: 16896706 DOI: 10.1007/s00122-006-0374-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 07/15/2006] [Indexed: 05/11/2023]
Abstract
The barley (Hordeum vulgare L.) stem rust (Puccinia graminis f. sp. tritici) resistance gene Rpg1 encodes a serine/threonine protein kinase with two tandem kinase domains. The Rpg1 gene family was identified from the cv. Morex and consists of five additional members with divergent homology to Rpg1. All family members encode serine/threonine kinase-like proteins with at least one predicted catalytically active kinase domain. The five family members were sequenced from cDNA and genomic DNA and genetically mapped. The family member most closely related to Rpg1, ABC1037, is located on chromosome 1(7H) bin 01, very near (approximately 50 kb) but not co-segregating with Rpg1. Two others, ABC1036 and ABC1040, are closely related to each other and tightly linked on chromosome 7(5H) bin 07. ABC1041 mapped to chromosome 7(5H) bin 13, tightly linked to the rust resistance genes rpg4 and Rpg5 providing resistance to barley stem rust pathotype QCC and rye stem rust pathotype 92-MN-90, respectively, but segregated away in a high-resolution population. ABC1063 was localized to chromosome 4(4H) bin 6. An interesting Rpg1 allele that appears to be the result of unequal recombination between Rpg1 and ABC1037 was characterized. No known resistance loci cosegregated with any family members, however characterization of the Rpg1 family has provided insight into the evolution of this novel gene family and may present tools for understanding the functional domains of Rpg1. The genetic mapping, gene structures, and analysis of amino-acid sequences of the Rpg1 gene family members are presented.
Collapse
Affiliation(s)
- R Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | | | | |
Collapse
|
13
|
Mammadov JA, Steffenson BJ, Maroof MAS. High-resolution mapping of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs) and synteny with rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1651-60. [PMID: 16195886 DOI: 10.1007/s00122-005-0100-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 09/01/2005] [Indexed: 05/04/2023]
Abstract
The rapidly growing expressed sequence tag (EST) resources of species representing the Poacea family and availability of comprehensive sequence information for the rice (Oryza sativa) genome create an excellent opportunity for comparative genome analysis. Extensive synteny between rice chromosome 1 and barley (Hordeum vulgare L.) chromosome 3 has proven extremely useful for saturation mapping of chromosomal regions containing target genes of large-genome barley with conserved orthologous genes from the syntenic regions of the rice genome. Rph5 is a gene conferring resistance to the barley leaf rust pathogen Puccinia hordei. It was mapped to chromosome 3HS, which is syntenic with rice chromosome 1S. The objective of this study was to increase marker density within the sub-centimorgan region around Rph5, using sequence-tagged site (STS) markers that were developed based on barley ESTs syntenic to the phage (P1)-derived artificial chromosome (PAC) clones comprising the distal region of rice chromosome 1S. Five rice PAC clones were used as queries in a blastn search to screen 375,187 barley ESTs. Ninety-four non-redundant EST sequences were identified from the EST database and used as templates to design 174 pairs of primer combinations. As a result, 9 barley EST-based STS markers were incorporated into the 'Bowman' x 'Magnif 102' high-resolution map of the Rph5 region. More importantly, six markers, including five EST-derived STS sequences, were found to co-segregate with Rph5. The results of this study demonstrate the usefulness of rice genomic resources for efficient deployment of barley ESTs for marker saturation of targeted barley genomic regions.
Collapse
Affiliation(s)
- J A Mammadov
- Department of Crop & Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0404, USA
| | | | | |
Collapse
|
14
|
Caldwell KS, Langridge P, Powell W. Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. PLANT PHYSIOLOGY 2004; 136:3177-90. [PMID: 15466237 PMCID: PMC523377 DOI: 10.1104/pp.104.044081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 07/28/2004] [Accepted: 08/14/2004] [Indexed: 05/18/2023]
Abstract
The ancestral shared synteny concept has been advocated as an approach to positionally clone genes from complex genomes. However, the unified grass genome model and the study of grasses as a single syntenic genome is a topic of considerable controversy. Hence, more quantitative studies of cereal colinearity at the sequence level are required. This study compared a contiguous 300-kb sequence of the barley (Hordeum vulgare) genome with the colinear region in rice (Oryza sativa). The barley sequence harbors genes involved in endosperm texture, which may be the subject of distinctive evolutionary forces and is located at the extreme telomeric end of the short arm of chromosome 5H. Comparative sequence analysis revealed the presence of five orthologous genes and a complex, postspeciation evolutionary history involving small chromosomal rearrangements, a translocation, numerous gene duplications, and extensive transposon insertion. Discrepancies in gene content and microcolinearity indicate that caution should be exercised in the use of rice as a surrogate for map-based cloning of genes from large genome cereals such as barley.
Collapse
|
15
|
Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 2004. [PMID: 15015127 DOI: 10.1007/s10142‐003‐0100‐z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accumulated sequence information of the almost completed rice genome and the transcriptome of other cereals provide an excellent starting point for comparative genome analysis. We performed targeted synteny-based marker saturation for the Rph16 leaf rust resistance locus in barley by extensively exploiting these newly available resources. Out of a collection of over 320,000 public barley ESTs 309 non-redundant candidate syntenic clones have been identified for this region in a two-step in silico selection procedure. For mapping, 54 barley cDNA-clones were selected due to the even distribution of their homologs on a putatively collinear 3-Mb rice BAC contig. Out of these, 97% (30) of the polymorphic markers could be genetically assigned in collinearity to the target region in barley and a set of 11 markers was integrated into an rph16 high-resolution map. Although, the collinear target region of rice does not contain an obvious candidate gene for rph16 the results demonstrate the potential of the presented procedure to efficiently utilize EST resources for synteny-based marker saturation. The systematic genome-wide exploitation of the increasing sequence data resources will strongly improve our current view of genome conservation and likely facilitate a synteny-based isolation of genes conserved across cereal species.
Collapse
Affiliation(s)
- Dragan Perovic
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 2004; 4:74-83. [PMID: 15015127 DOI: 10.1007/s10142-003-0100-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 12/01/2003] [Accepted: 12/10/2003] [Indexed: 11/27/2022]
Abstract
The accumulated sequence information of the almost completed rice genome and the transcriptome of other cereals provide an excellent starting point for comparative genome analysis. We performed targeted synteny-based marker saturation for the Rph16 leaf rust resistance locus in barley by extensively exploiting these newly available resources. Out of a collection of over 320,000 public barley ESTs 309 non-redundant candidate syntenic clones have been identified for this region in a two-step in silico selection procedure. For mapping, 54 barley cDNA-clones were selected due to the even distribution of their homologs on a putatively collinear 3-Mb rice BAC contig. Out of these, 97% (30) of the polymorphic markers could be genetically assigned in collinearity to the target region in barley and a set of 11 markers was integrated into an rph16 high-resolution map. Although, the collinear target region of rice does not contain an obvious candidate gene for rph16 the results demonstrate the potential of the presented procedure to efficiently utilize EST resources for synteny-based marker saturation. The systematic genome-wide exploitation of the increasing sequence data resources will strongly improve our current view of genome conservation and likely facilitate a synteny-based isolation of genes conserved across cereal species.
Collapse
Affiliation(s)
- Dragan Perovic
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 2004; 4:84-93. [PMID: 14770301 DOI: 10.1007/s10142-004-0104-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.
Collapse
Affiliation(s)
- Chengdao Li
- Department of Agriculture, 3 Baron-Hay Court, WA 6151, South Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bellgard M, Ye J, Gojobori T, Appels R. The bioinformatics challenges in comparative analysis of cereal genomes-an overview. Funct Integr Genomics 2004; 4:1-11. [PMID: 14770300 DOI: 10.1007/s10142-004-0102-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 11/24/2022]
Abstract
Comparative genomic analysis is the cornerstone of in silico-based approaches to understanding biological systems and processes across cereal species, such as rice, wheat and barley, in order to identify genes of agronomic interest. The size of the genomic repositories is nearly doubling every year, and this has significant implications on the way bioinformatics analyses are carried out. In this overview the concepts and technology underpinning bioinformatics as applied to comparative genomic analysis are considered in the context of other manuscripts appearing in this issue of Functional and Integrative Genomics.
Collapse
Affiliation(s)
- M Bellgard
- Molecular Plant Breeding CRC, Murdoch University, South Street, WA 6152 Murdoch, Australia
| | | | | | | |
Collapse
|
19
|
Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 2003; 164:673-83. [PMID: 12807788 PMCID: PMC1462599 DOI: 10.1093/genetics/164.2.673] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grass genomes differ greatly in chromosome number, ploidy level, and size. Despite these differences, very good conservation of the marker order (collinearity) was found at the genetic map level between the different grass genomes. Collinearity is particularly good between rice chromosome 1 and the group 3 chromosomes in the Triticeae. We have used this collinearity to saturate the leaf rust resistance locus Rph7 on chromosome 3HS in barley with ESTs originating from rice chromosome 1S. Chromosome walking allowed the establishment of a contig of 212 kb spanning the Rph7 resistance gene. Sequencing of the contig showed an average gene density of one gene/20 kb with islands of higher density. Comparison with the orthologous rice sequence revealed the complete conservation of five members of the HGA gene family whereas intergenic regions differ greatly in size and composition. In rice, the five genes are closely associated whereas in barley intergenic regions are >38-fold larger. The size difference is due mainly to the presence of six additional genes as well as noncoding low-copy sequences. Our data suggest that a major rearrangement occurred in this region since the Triticeae and rice lineage diverged.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Conserved Sequence
- Contig Mapping
- DNA, Intergenic
- DNA, Plant
- Evolution, Molecular
- Expressed Sequence Tags
- Gene Library
- Genes, Plant
- Genome, Plant
- Models, Genetic
- Molecular Sequence Data
- Oryza/genetics
- Phylogeny
- Physical Chromosome Mapping
- Poaceae/genetics
- Polymorphism, Restriction Fragment Length
- Sequence Analysis, DNA
- Triticum/genetics
Collapse
Affiliation(s)
- S Brunner
- Institute of Plant Biology, University of Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Malysheva L, Sjakste T, Matzk F, Röder M, Ganal M. Molecular cytogenetic analysis of wheat-barley hybrids using genomic in situ hybridization and barley microsatellite markers. Genome 2003; 46:314-22. [PMID: 12723047 DOI: 10.1139/g02-117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present investigation, genomic in situ hybridization (GISH) and barley microsatellite markers were used to analyse the genome constitution of wheat-barley hybrids from two backcross generations (BC1 and BC2). Two BC1 plants carried 3 and 6 barley chromosomes, respectively, according to GISH data. Additional chromosomal fragments were detected using microsatellites. Five BC2 plants possessed complete barley chromosomes or chromosome segments and six BC2 plants did not preserve barley genetic material. Molecular markers revealed segments of the barley genome with the size of one marker only, which probably resulted from recombination between wheat and barley chromosomes. The screening of backcrossed populations from intergeneric hybrids could be effectively conducted using both genomic in situ hybridization and molecular microsatellite markers. GISH images presented a general overview of the genome constitution of the hybrid plants, while microsatellite analysis revealed the genetic identity of the alien chromosomes and chromosomal segments introgressed. These methods were complementary and provided comprehensive information about the genomic constitution of the plants produced.
Collapse
Affiliation(s)
- L Malysheva
- Institute of Plant Genetics and Crop Plant Research, IPK, Correns Str. 3, 06466 Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
21
|
Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M, Pryor AJ, Langridge P, Schulze-Lefert P, Stougaard J. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Genet Genomics 2003; 269:150-61. [PMID: 12715163 DOI: 10.1007/s00438-003-0823-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 01/17/2003] [Indexed: 10/25/2022]
Abstract
The majority of verified plant disease resistance genes isolated to date are of the NBS-LRR class, encoding proteins with a predicted nucleotide binding site (NBS) and a leucine-rich repeat (LRR) region. We took advantage of the sequence conservation in the NBS motif to clone, by PCR, gene fragments from barley representing putative disease resistance genes of this class. Over 30 different resistance gene analogs (RGAs) were isolated from the barley cultivar Regatta. These were grouped into 13 classes based on DNA sequence similarity. Actively transcribed genes were identified from all classes but one, and cDNA clones were isolated to derive the complete NBS-LRR protein sequences. Some of the NBS-LRR genes exhibited variation with respect to whether and where particular introns were spliced, as well as frequent premature polyadenylation. DNA sequences related to the majority of the barley RGAs were identified in the recently expanded public rice genomic sequence database, indicating that the rice sequence can be used to extract a large proportion of the RGAs from barley and other cereals. Using a combination of RFLP and PCR marker techniques, representatives of all barley RGA gene classes were mapped in the barley genome, to all chromosomes except 4H. A number of the RGA loci map in the vicinity of known disease resistance loci, and the association between RGA S-120 and the nematode resistance locus Ha2 on chromosome 2H was further tested by co-segregation analysis. Most of the RGA sequences reported here have not been described previously, and represent a useful resource as candidates or molecular markers for disease resistance genes in barley and other cereals.
Collapse
Affiliation(s)
- L H Madsen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000C Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Druka A, Kudrna D, Rostoks N, Brueggeman R, von Wettstein D, Kleinhofs A. Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 2003; 302:171-8. [PMID: 12527208 DOI: 10.1016/s0378-1119(02)01105-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The barley and rice chalcone flavonone isomerase (Cfi) genes were isolated and identified by homology to the maize Cfi gene. Structure analysis indicated high similarity except that the barley gene lacked intron 3. The maize Cfi gene has been mapped to three loci, but only a single locus was detected in barley and rice. This explains the lack of observed mutants in maize while a single locus anthocyanin-less 30 (ant30), with four alleles ant30-245, ant30-310, ant30-272 and ant30-287 has been described in barley. Based on biochemical analysis it has been suggested that these mutants are in the Cfi gene resulting in absence of anthocyanin. In order to provide molecular evidence for or against this hypothesis we sequenced the four ant30 alleles and compared them to their respective wild-type alleles. The three sodium azide induced mutants ant30-245, ant30-272 and ant30-287 showed single base changes resulting in two non-sense and one mis-sense mutations affecting the protein function. The 1-nitroso-5,6-dihydrouracil induced mutant ant30-310 had one base substitution and a 25 bp deletion. These observations are in accordance with the conclusion that the ant30 phenotype is caused by mutations in the Cfi gene. The nature of the mutants induced is in line with the proposed mechanism of action for the mutagens used.
Collapse
Affiliation(s)
- Arnis Druka
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kleinhofs A, Graner A. An integrated map of the barley genome. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 2001. [DOI: 10.1007/978-94-015-9815-6_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|