1
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|
2
|
Precise mapping of 17 deletion breakpoints within the central hotspot deletion region (introns 50 and 51) of the DMD gene. J Hum Genet 2017; 62:1057-1063. [PMID: 28878337 DOI: 10.1038/jhg.2017.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
Exon deletions in the human DMD gene, which encodes the dystrophin protein, are the molecular defect in 50-70% of cases of Duchenne/Becker muscular dystrophies. Deletions are preferentially clustered in the 5' (exons 2-20) and the central (exons 45-53) region of DMD, likely because local DNA structure predisposes to specific breakage or recombination events. Notably, innovative therapeutic strategies may rescue dystrophin function by homology-based specific targeting of sequences within the central DMD hot spot deletion region. To further study molecular mechanisms that generate such frequent genome variations and to identify residual intronic sequences, we sequenced 17 deletion breakpoints within introns 50 and 51 of DMD and analyzed the surrounding genomic architecture. There was no breakpoint clustering within the introns nor extensive homology between sequences adjacent to each junction. However, at or near the breakpoint, we found microhomology, short tandem repeats, interspersed repeat elements and short sequence stretches that predispose to DNA deletion or bending. Identification of such structural elements contributes to elucidate general mechanisms generating deletion within the DMD gene. Moreover, precise mapping of deletion breakpoints and localization of repeated elements are of interest, because residual intronic sequences may be targeted by therapeutic strategies based on genome editing correction.
Collapse
|
3
|
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.
Collapse
Affiliation(s)
- Akitsu Hotta
- Center for iPS Cell Research & Application (CiRA), Kyoto University, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
| |
Collapse
|
4
|
Ye Y, Yu P, Yong J, Zhang T, Wei X, Qi M, Jin F. Preimplantational genetic diagnosis and mutation detection in a family with duplication mutation of DMD gene. Gynecol Obstet Invest 2014; 78:272-8. [PMID: 25196347 DOI: 10.1159/000365083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 06/04/2014] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disease caused by mutation in the DMD gene. A 38-year-old woman was referred to our hospital with her son who was diagnosed with DMD. Multiplex PCR failed to detect DMD mutations in the affected child. The female carrier underwent preimplantation genetic diagnosis by linkage analysis and gender determination. Eight embryos were biopsied after in vitro fertilization. Two healthy embryos determined both as females (E1 and E3) were transferred. Although the paternal allele was absent in E3, it was considered to be a result of allele dropout for the STR-49 marker. Surprisingly, a female and a male baby were delivered at 38 gestational weeks, suggesting that E3 was a male embryo with the allele dropout occurring at the SRY gene. Exon 2 duplication was detected in the DMD patient and the carrier mother using next-generation sequencing and multiple ligation-dependent probe amplification. Next, we verified the duplication of exon 2 by real-time PCR, using a special primer at 3' of intron 1, very close to exon 2. Finally, we confirmed that both newborns inherited the normal allele, using quantitative real-time PCR and linkage analysis.
Collapse
Affiliation(s)
- Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Xie S, Lan Z, Qu N, Wei X, Yu P, Zhu Q, Yang G, Wang J, Shi Q, Wang W, Yang L, Yi X. Detection of truncated dystrophin lacking the C-terminal domain in a Chinese pedigree by next-generation sequencing. Gene 2012; 499:139-42. [PMID: 22425969 DOI: 10.1016/j.gene.2012.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/15/2012] [Accepted: 03/04/2012] [Indexed: 01/06/2023]
Abstract
Dystrophin (DMD) gene is the largest gene containing 79 exons involving various mutation types and regions, and targeted next-generation sequencing (NGS) was employed in detecting DMD gene mutation in the present study. A literature-annotated disease nonsense mutation (c.10141C>T, NM_004006.1) in exon 70 that has been reported as Duchenne Muscular Dystrophy (DMD)-causing mutation was found in our two patients, the proband and his cousin. In the present study two main methods were used, the next-generation sequencing and the classic Sanger sequencing. The exon capture followed by HiSeq2000 sequencing was specifically used in this study. Combined applications of the next-generation sequencing platform and bioinformatics are proved to be effective methods for DMD diagnosis.
Collapse
Affiliation(s)
- Shuqi Xie
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, Nishino I, Brice A, Hattori N, Tsuji S. Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am J Hum Genet 2010; 87:75-89. [PMID: 20598272 DOI: 10.1016/j.ajhg.2010.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/05/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022] Open
Abstract
Common fragile sites (CFSs) are specific chromosome regions that exhibit an increased frequency of breaks when cells are exposed to a DNA-replication inhibitor such as aphidicolin. PARK2 and DMD, the causative genes for autosomal-recessive juvenile Parkinsonism and Duchenne and Becker muscular dystrophy, respectively, are two very large genes that are located within aphidicolin-induced CFSs. Gross rearrangements within these two genes are frequently observed as the causative mutations for these diseases, and similar alterations within the large fragile sites that surround these genes are frequently observed in cancer cells. To elucidate the molecular mechanisms underlying this fragility, we performed a custom-designed high-density comparative genomic hybridization analysis to determine the junction sequences of approximately 500 breakpoints in germ cell lines and cancer cell lines involving PARK2 or DMD. The sequence signatures where these breakpoints occur share some similar features both in germ cell lines and in cancer cell lines. Detailed analyses of these structures revealed that microhomologies are predominantly involved in rearrangement processes. Furthermore, breakpoint-clustering regions coincide with the latest-replicating region and with large nuclear-lamina-associated domains and are flanked by the highest-flexibility peaks and R/G band boundaries, suggesting that factors affecting replication timing collectively contribute to the vulnerability for rearrangement in both germ cell and somatic cell lines.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Miyazaki D, Yoshida K, Fukushima K, Nakamura A, Suzuki K, Sato T, Takeda S, Ikeda SI. Characterization of deletion breakpoints in patients with dystrophinopathy carrying a deletion of exons 45-55 of the Duchenne muscular dystrophy (DMD) gene. J Hum Genet 2009; 54:127-30. [PMID: 19158820 DOI: 10.1038/jhg.2008.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion of exons 45-55 (del45-55) in the Duchenne muscular dystrophy gene (DMD) has gained particular interest in the field of molecular therapy, because it causes a milder phenotype than DMD, and therefore, may represent a good candidate for the goal of a multiple exon-skipping strategy. We have precisely characterized deletion breakpoints in three patients with del45-55 in DMD. Two of them were young adult males of the X-linked dilated cardiomyopathy phenotype, and the third patient revealed the mild Becker muscular dystrophy phenotype of late onset. The deletion breakpoints differed among patients. The deletion started at nt 226 604, 231 518, 117 284 in intron 44, and ended at nt 64 994, 59 314, 71 806 in intron 55, respectively. Deletion junctions showed no significant homology between the sequences adjacent to the distal and proximal end joints in these patients. Deletion breakpoints were not primarily associated with any particular sequence element, or with a matrix attachment region. However, there were several palindromic sequences and short tandem repeats at or near the breakpoints. These sequences, with a marked propensity to form secondary DNA structure intermediates, may predispose local DNA to breakage and intragenic recombination in these patients.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vazna A, Havlovicova M, Sedlacek Z. Molecular cloning and analysis of breakpoints on ring chromosome 17 in a patient with autism. Gene 2008; 407:186-92. [DOI: 10.1016/j.gene.2007.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
9
|
't Hoen PAC, de Meijer EJ, Boer JM, Vossen RHAM, Turk R, Maatman RGHJ, Davies KE, van Ommen GJB, van Deutekom JCT, den Dunnen JT. Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 2007; 283:5899-907. [PMID: 18083704 DOI: 10.1074/jbc.m709410200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the generation of mice with an intact and functional copy of the 2.3-megabase human dystrophin gene (hDMD), the largest functional stretch of human DNA thus far integrated into a mouse chromosome. Yeast spheroplasts containing an artificial chromosome with the full-length hDMD gene were fused with mouse embryonic stem cells and were subsequently injected into mouse blastocysts to produce transgenic hDMD mice. Human-specific PCR, Southern blotting, and fluorescent in situ hybridization techniques demonstrated the intactness and stable chromosomal integration of the hDMD gene on mouse chromosome 5. Expression of the transgene was confirmed by RT-PCR and Western blotting. The tissue-specific expression pattern of the different DMD transcripts was maintained. However, the human Dp427p and Dp427m transcripts were expressed at 2-fold higher levels and human Dp427c and Dp260 transcripts were expressed at 2- and 4-fold lower levels than their endogenous counterparts. Ultimate functional proof of the hDMD transgene was obtained by crossing of hDMD mice with dystrophin-deficient mdx mice and dystrophin and utrophin-deficient mdx x Utrn-/- mice. The hDMD transgene rescued the lethal dystrophic phenotype of the mdx x Utrn-/- mice. All signs of muscular dystrophy disappeared in the rescued mice, as demonstrated by histological staining of muscle sections and gene expression profiling experiments. Currently, hDMD mice are extensively used for preclinical testing of sequence-specific therapeutics for the treatment of Duchenne muscular dystrophy. In addition, the hDMD mouse can be used to study the influence of the genomic context on deletion and recombination frequencies, genome stability, and gene expression regulation.
Collapse
Affiliation(s)
- Peter A C 't Hoen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
White SJ, den Dunnen JT. Copy number variation in the genome; the human DMD gene as an example. Cytogenet Genome Res 2006; 115:240-6. [PMID: 17124406 DOI: 10.1159/000095920] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022] Open
Abstract
Recent developments have yielded new technologies that have greatly simplified the detection of deletions and duplications, i.e., copy number variants (CNVs). These technologies can be used to screen for CNVs in and around specific genomic regions, as well as genome-wide. Several genome-wide studies have demonstrated that CNV in the human genome is widespread and may include millions of nucleotides. One of the questions that emerge is which sequences, structures and/or processes are involved in their generation. Using as an example the human DMD gene, mutations in which cause Duchenne and Becker muscular dystrophy, we review the current data, determine the deletion and duplication profile across the gene and summarize the information that has been collected regarding their origin. In addition we discuss the methods most frequently used for their detection, in particular MAPH and MLPA.
Collapse
Affiliation(s)
- S J White
- Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Sironi M, Pozzoli U, Comi GP, Riva S, Bordoni A, Bresolin N, Nag DK. A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast. FASEB J 2006; 20:1910-2. [PMID: 16891620 DOI: 10.1096/fj.05-5635fje] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deletions within the dystrophin gene (DMD) account for >70% of mutations leading to Duchenne and Becker muscular dystrophies (DMD and BMD). Deletion breakpoints were reported to be scattered within regions that also represent meiotic recombination hot spots. Recent studies indicates that deletion junctions arise from nonhomologous end joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammals. Here we show that a region in intron 47 (i.e., a major deletion hot spot in the DMD gene) generates DSBs during meiosis in yeast and harbors a cluster of previously sequenced deletion breaks. Mapping of breakpoints in 26 BMD/DMD patients indicated that the frequency of breakpoint occurrence around this region is 3-fold higher than expected by chance. These findings suggest that DSBs mediate deletion formation in intron 47 and possibly account for the high frequency of meiotic recombination in the region. Statistical analysis indicated the presence of at least one other breakpoint cluster in intron 47. Taken together, these results suggest that the primary events in deletion formation occur within discrete regions and that the scattered breakpoint distribution reflects both a variable degree of DSB end processing and the availability of a small (compared to the huge regions involved) deletion junction sample.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. Medea, Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Férec C, Casals T, Chuzhanova N, Macek M, Bienvenu T, Holubova A, King C, McDevitt T, Castellani C, Farrell PM, Sheridan M, Pantaleo SJ, Loumi O, Messaoud T, Cuppens H, Torricelli F, Cutting GR, Williamson R, Ramos MJA, Pignatti PF, Raguénès O, Cooper DN, Audrézet MP, Chen JM. Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. Eur J Hum Genet 2006; 14:567-76. [PMID: 16493442 DOI: 10.1038/sj.ejhg.5201590] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gross genomic rearrangements involving deletions in the CFTR gene have recently been found to account for approximately 20% of unidentified cystic fibrosis (CF) chromosomes in both French and Italian patients. Using QMPSF and walking quantitative DHPLC, six novel mutations (three simple deletions, two complex deletions with short insertions of 3-6 bp, and a complex deletion with a 182 bp inverted downstream sequence) were characterized by screening 274 unidentified CF chromosomes from 10 different countries. These lesions increase the total number of fully characterized large CFTR genomic rearrangements involving deletions to 21. Systematic analysis of the 42 associated breakpoints indicated that all 21 events were caused by nonhomologous recombination. Whole gene complexity analysis revealed a significant correlation between regions of low sequence complexity and the locations of the deletion breakpoints. Known recombination-promoting motifs were noted in the vicinity of the breakpoints. A total of 11 simple deletions were potentially explicable in terms of the classical model of replication slippage. However, the complex deletions appear to have arisen via multiple mechanisms; three of the five complex deletions with short insertions and both examples of large inverted insertions (299 and 182 bp, respectively) can be explained by either a model of serial replication slippage in cis (SRScis) or SRS in trans (SRStrans). Finally, the nature and distribution of large genomic rearrangements in the CFTR gene were compared and contrasted with those of two other genes, DMD and MSH2, with a view to gaining a broader understanding of DNA sequence context in mediating the diverse underlying mutational mechanisms.
Collapse
Affiliation(s)
- Claude Férec
- INSERM, U613 (Génétique Moléculaire et Génétique Epidémiologique), Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tran VK, Takeshima Y, Zhang Z, Yagi M, Nishiyama A, Habara Y, Matsuo M. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene. J Med Genet 2006; 43:924-30. [PMID: 16738009 PMCID: PMC2563197 DOI: 10.1136/jmg.2006.042317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mutations in exonic splicing enhancer sequences are known to cause splicing errors. Although exonic splicing enhancers have been identified as a stretch of purine-rich sequences, it has been difficult to precisely pinpoint the determinant nucleotides in these sequences. This article reports that a 4-bp deletion in exon 38 of the dystrophin gene induced complete exon 38 skipping in vivo. Moreover, the third nucleotide of the deletion was shown to be determinant for the exonic splicing enhancer activity in in vivo splicing analysis of hybrid minigenes encoding mutant exons. METHOD Genomic DNA analysis of a 2-year-old boy with a raised level of serum creatine kinase yielded a 4-bp deletion 11 bp upstream of the 3' end of exon 38 of the dystrophin gene (c. 5434-5437del TTCA), disrupting a predicted SC35-binding site. RESULT Interestingly, his dystrophin mRNA was shown to completely lack exon 38 (exon 38- transcript). As the exon 38- transcript coded for a truncated dystrophin protein, this exon skipping was determined to be a modifying factor of his phenotype. In an in vivo splicing assay, a hybrid minigene encoding exon 38 with the 4-bp deletion was shown to induce complete exon 38 skipping, confirming the deleted region as a splicing enhancer sequence. Site-directed mutagenesis of the deleted sequence showed that the complete exon 38 skipping was caused by mutation of the third nucleotide position of the deletion (C5436), whereas mutations at the other three nucleotide positions induced partial exon skipping. CONCLUSION Our results underline the potential of understanding the regulation of exonic splicing enhancer sequences and exon skipping therapy for treatment of Duchenne's muscular dystrophy.
Collapse
Affiliation(s)
- Van Khanh Tran
- Department of Pediatrics, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
MacLean HE, Favaloro JM, Warne GL, Zajac JD. Double-strand DNA break repair with replication slippage on two strands: a novel mechanism of deletion formation. Hum Mutat 2006; 27:483-9. [PMID: 16619235 DOI: 10.1002/humu.20327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have characterized an unusual family with two different androgen receptor (AR) gene deletions, in which we propose a novel mechanism of deletion formation has occurred. Affected individuals have the X-linked disorder androgen insensitivity syndrome, and we previously showed that different family members have deletions of different exons of the AR gene. We have now fully sequenced the deletions from affected individuals, and confirmed the presence of different deletions in different affected family members. Most affected and heterozygote individuals have a 4,430-bp deletion of exon 5 that occurred between repeated GTGGCAT motifs in introns 4 and 5. One affected hemizygous individual has a 4,033-bp deletion of exons 6 and 7 that occurred between repeated CCTC motifs in introns 5 and 7. The intron 5 breakpoint junctions of the two deletions are only 11 bp apart. Surprisingly, the maternal grandmother of the original index case was found to be mosaic for both deletional events, as well as having the normal AR gene. Karyotyping ruled out 47,XXX trisomy, indicating triple mosaicism for the two different deleted AR alleles and a normal AR allele. This triple mosaicism must have occurred early in embryonic development, as both deletions were passed on to different children. Based on these findings, we propose a novel mechanism of deletion formation. We suggest that during AR gene replication, a double strand DNA break occurred in intron 5, and that a variant of replication slippage occurred on both newly synthesized strands between the repeat motifs of microhomology, leading to the formation of the two different AR gene deletions.
Collapse
Affiliation(s)
- Helen E MacLean
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Australia.
| | | | | | | |
Collapse
|
15
|
Woodward KJ, Cundall M, Sperle K, Sistermans EA, Ross M, Howell G, Gribble SM, Burford DC, Carter NP, Hobson DL, Garbern JY, Kamholz J, Heng H, Hodes ME, Malcolm S, Hobson GM. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination. Am J Hum Genet 2005; 77:966-87. [PMID: 16380909 PMCID: PMC1285180 DOI: 10.1086/498048] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/12/2005] [Indexed: 11/04/2022] Open
Abstract
We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1-6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability.
Collapse
Affiliation(s)
- Karen J. Woodward
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Maria Cundall
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Karen Sperle
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Erik A. Sistermans
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Mark Ross
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Gareth Howell
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Susan M. Gribble
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Deborah C. Burford
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Nigel P. Carter
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Donald L. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - James Y. Garbern
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - John Kamholz
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Henry Heng
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - M. E. Hodes
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Sue Malcolm
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Grace M. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| |
Collapse
|
16
|
van der Klift H, Wijnen J, Wagner A, Verkuilen P, Tops C, Otway R, Kohonen-Corish M, Vasen H, Oliani C, Barana D, Moller P, Delozier-Blanchet C, Hutter P, Foulkes W, Lynch H, Burn J, Möslein G, Fodde R. Molecular characterization of the spectrum of genomic deletions in the mismatch repair genes MSH2, MLH1, MSH6, and PMS2 responsible for hereditary nonpolyposis colorectal cancer (HNPCC). Genes Chromosomes Cancer 2005; 44:123-38. [PMID: 15942939 DOI: 10.1002/gcc.20219] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A systematic search by Southern blot analysis in a cohort of 439 hereditary nonpolyposis colorectal cancer (HNPCC) families for genomic rearrangements in the main mismatch repair (MMR) genes, namely, MSH2, MLH1, MSH6, and PMS2, identified 48 genomic rearrangements causative of this inherited predisposition to colorectal cancer in 68 unrelated kindreds. Twenty-nine of the 48 rearrangements were found in MSH2, 13 in MLH1, 2 in MSH6, and 4 in PMS2. The vast majority were deletions, although one previously described large inversion, an intronic insertion, and a more complex rearrangement also were found. Twenty-four deletion breakpoints have been identified and sequenced in order to determine the underlying recombination mechanisms. Most fall within repetitive sequences, mainly Alu repeats, in agreement with the differential distribution of deletions between the MSH2 and MLH1 genes: the higher number and density of Alu repeats in MSH2 corresponded with a higher incidence of genomic rearrangement at this disease locus when compared with other MMR genes. Long interspersed nuclear element (LINE) repeats, relatively abundant in, for example, MLH1, did not seem to contribute to the genesis of the deletions, presumably because of their older evolutionary age and divergence among individual repeat units when compared with short interspersed nuclear element (SINE) repeats, including Alu repeats. Moreover, Southern blot analysis of the introns and the genomic regions flanking the MMR genes allowed us to detect 6 novel genomic rearrangements that left the coding region of the disease-causing gene intact. These rearrangements comprised 4 deletions upstream of the coding region of MSH2 (3 cases) and MSH6 (1 case), a 2-kb insertion in intron 7 of PMS2, and a small (459-bp) deletion in intron 13 of MLH1. The characterization of these genomic rearrangements underlines the importance of genomic deletions in the etiology of HNPCC and will facilitate the development of PCR-based tests for their detection in diagnostic laboratories.
Collapse
Affiliation(s)
- Heleen van der Klift
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Vogt N, Lefèvre SH, Apiou F, Dutrillaux AM, Cör A, Leuraud P, Poupon MF, Dutrillaux B, Debatisse M, Malfoy B. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A 2004; 101:11368-73. [PMID: 15269346 PMCID: PMC509208 DOI: 10.1073/pnas.0402979101] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amplification of the epidermal growth factor receptor gene on double minutes is recurrently observed in cells of advanced gliomas, but the structure of these extrachromosomal circular DNA molecules and the mechanisms responsible for their formation are still poorly understood. By using quantitative PCR and chromosome walking, we investigated the genetic content and the organization of the repeats in the double minutes of seven gliomas. It was established that all of the amplicons of a given tumor derive from a single founding extrachromosomal DNA molecule. In each of these gliomas, the founding molecule was generated by a simple event that circularizes a chromosome fragment overlapping the epidermal growth factor receptor gene. In all cases, the fusion of the two ends of this initial amplicon resulted from microhomology-based nonhomologous end-joining. Furthermore, the corresponding chromosomal loci were not rearranged, which strongly suggests that a postreplicative event was responsible for the formation of each of these initial amplicons.
Collapse
Affiliation(s)
- Nicolas Vogt
- Instabilité du Génome et Cancer, FRE 2584, Centre National de la Recherche Scientifique, Institut Curie, 26 Rue d'Ulm, 75248 Paris, 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cagliani R, Sironi M, Ciafaloni E, Bardoni A, Fortunato F, Prelle A, Serafini M, Bresolin N, Comi GP. An intragenic deletion/inversion event in the DMD gene determines a novel exon creation and results in a BMD phenotype. Hum Genet 2004; 115:13-8. [PMID: 15118904 DOI: 10.1007/s00439-004-1118-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 03/10/2004] [Indexed: 11/30/2022]
Abstract
Duchenne and Becker Muscular Dystrophy (DMD and BMD) are caused, in the majority of cases, by deletions in the dystrophin gene ( DMD). Here we describe the unprecedented case of a BMD patient carrying a large out-of-frame intragenic deletion, together with an inversion in the DMD gene, resulting in the inclusion of a novel exon in the transcript. Multiplex PCR amplification revealed the presence of a 48-52 exon deletion, but transcript analysis identified two unexpected products, neither of them including exon 53. The shorter mRNA derived from the juxtaposition of exons 47-54 (in-frame), while the longer one resulted from the inclusion of a novel 73-bp exon between exons 47 and 54. Sequence analysis revealed that the inserted sequence derived from an inverted portion of intron 53; its inclusion is predicted to determine protein truncation. The presence of a genomic inversion involving exon 53 and flanking regions was confirmed, and inversion/deletion breakpoints were sequenced. The inverted 73-bp sequence displays splicing signals at both ends and thus it is probably recognized as a novel exon when the partially inverted hnRNA is processed. These findings highlight the importance of mRNA analysis on patients that, based on routine DNA screenings, do not follow the reading-frame rule. This is the first reported patient carrying both an intragenic deletion and inversion in the DMD locus. This case might provide further insight into both the mechanisms that determine genomic rearrangements in the DMD locus and the molecular signals that drive exon inclusion.
Collapse
Affiliation(s)
- Rachele Cagliani
- I.R.C.C.S. E. Medea, Associazione "La Nostra Famiglia", Via Don Luigi Monza 20, 23842, Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2:731-40. [PMID: 14636778 DOI: 10.1016/s1474-4422(03)00585-4] [Citation(s) in RCA: 740] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large and complex gene on the X chromosome encodes dystrophin. Many mutations have been described in this gene, most of which affect the expression of the muscle isoform, the best-known protein product of this locus. These mutations result in the Duchenne and Becker muscular dystrophies (DMD and BMD). However, there are several other tissue specific isoforms of dystrophin, some exclusively or predominantly expressed in the brain or the retina. Mutations affecting the correct expression of these tissue-specific isoforms have been associated with the CNS involvement common in DMD. Rare mutations also account for the allelic disorder X-linked dilated cardiomyopathy, in which dystrophin expression or function is affected mostly or exclusively in the heart. Genotype definition of the dystrophin gene in patients with dystrophinopathies has taught us much about functionally important domains of the protein itself and has provided insights into several regulatory mechanisms governing the gene expression profile. Here, we focus on current understanding of the genotype-phenotype relation for mutations in the dystrophin gene and their implications for gene functions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | |
Collapse
|
21
|
Pozzoli U, Elgar G, Cagliani R, Riva L, Comi GP, Bresolin N, Bardoni A, Sironi M. Comparative analysis of vertebrate dystrophin loci indicate intron gigantism as a common feature. Genome Res 2003; 13:764-72. [PMID: 12727896 PMCID: PMC430921 DOI: 10.1101/gr.776503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes.
Collapse
Affiliation(s)
- Uberto Pozzoli
- IRCCS E. Medea, Associazione La Nostra Famiglia, 23842 Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | | | |
Collapse
|