1
|
Masson E, Maestri S, Bordeau V, Cooper DN, Férec C, Chen JM. Alu insertion-mediated dsRNA structure formation with pre-existing Alu elements as a disease-causing mechanism. Am J Hum Genet 2024; 111:2176-2189. [PMID: 39265574 PMCID: PMC11480803 DOI: 10.1016/j.ajhg.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Sandrine Maestri
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France.
| |
Collapse
|
2
|
Wen YJ, Yu QX, Jiang F, Li DZ. Identification of a Novel Mutation in the 3' Untranslated Region of the β-Globin Gene (HBB:c.*132C>G) in a Chinese Family. Hemoglobin 2022; 46:347-350. [PMID: 36876863 DOI: 10.1080/03630269.2023.2176320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We describe a new β-globin mutation causing silent β-thalassemia (β-thal). The proband was a 5-year-old boy who presented with the phenotype of thalassemia intermedia. Molecular diagnoses revealed a genomic alteration at position 1606 of the HBB gene (HBB:c.*132C>G) in combination with a common β0-thal mutation (HBB:c.126_129delCTTT). The 3'-untranslated region (UTR) mutation was inherited from his father who showed a normal mean corpuscular volume (MCV) and Hb A2 level. The discovery of rare mutations provides important information related to both genetic counseling for families involved.
Collapse
Affiliation(s)
- Yun-Jing Wen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Kaur G, Bhadada SK, Santra M, Pal R, Sarma P, Sachdeva N, Dhiman V, Dahiya D, Saikia UN, Chakraborty A, Sood A, Prakash M, Behera A, Rao SD. Multilevel Annotation of Germline MEN1 Variants of Synonymous, Nonsynonymous, and Uncertain Significance in Indian Patients With Sporadic Primary Hyperparathyroidism. J Bone Miner Res 2022; 37:1860-1875. [PMID: 35856247 DOI: 10.1002/jbmr.4653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/08/2022]
Abstract
Primary hyperparathyroidism (PHPT) is third most common endocrine disorder characterized by hypercalcemia with elevated or nonsuppressed parathyroid hormone levels by parathyroid tumors. Familial PHPT, as part of multiple endocrine type-1, occurs due to the germline mutation in the MEN1 gene. The involvement and the role of germline MEN1 variations in sporadic PHPT of Indian PHPT patients are unknown. Precise classifications of different types of MEN1 variations are fundamental for determining clinical relevance and diagnostic role. This prospective cohort study was performed on 82 patients with PHPT (with no clinical or history of MEN1) who underwent screening for MEN1 variations through Sanger sequencing. Multilevel computational analysis was performed to determine the structure-function relationship of synonymous, nonsynonymous, and variants of uncertain significance (VUS). Of the 82 PHPT patients, 42 (51%) had 26 germline MEN1 variants, including eight nonsynonymous, seven synonymous, nine VUS, one splice site, and one regulatory variation. Five most common germline variations (c.1838A>G, c.1817C>T, c.1525C>A, c.-35A>T, and c.250T>C) were observed in this study. c.-35A>T (5' untranslated region [UTR]) was associated with recurrence of PHPT (odds ratio [OR] = 5.4; p = 0.04) and subsequent detection of other endocrine tumors (OR = 13.6, p = 0.035). c.1525C>A was associated with multi glandular parathyroid tumor (OR = 13.6, p = 0.035). Align-Grantham variation and Grantham deviation (Align-GVGD), functional analysis through hidden Markov MODEL (FATHMM), and MutationTaster analysis reported the disease-specific potential of VUS and synonymous variations. Significant linkage disequilibrium was observed in c.1785G>A and c.1817C>T (r2 = 0.3859, p = 0.0001), c.1475C>G and c.1525C>A (r2 = 0.385, p = 0.0004), and c.1569T>C and c.1838A>G (r2 = 0.488, p = 0.0001). The detection of MEN1 variations, especially those with disease-specific potential, can prompt early screening for other MEN1-related tumors and disease recurrence. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mithun Santra
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anuradha Chakraborty
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mahesh Prakash
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunanshu Behera
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sudhaker D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
4
|
Tants JN, Becker L, McNicoll F, Müller-McNicoll M, Schlundt A. NMR-derived secondary structure of the full-length Ox40 mRNA 3'UTR and its multivalent binding to the immunoregulatory RBP Roquin. Nucleic Acids Res 2022; 50:4083-4099. [PMID: 35357505 PMCID: PMC9023295 DOI: 10.1093/nar/gkac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lea Marie Becker
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - François McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Shatoff E, Bundschuh R. Single nucleotide polymorphisms affect RNA-protein interactions at a distance through modulation of RNA secondary structures. PLoS Comput Biol 2020; 16:e1007852. [PMID: 32379750 PMCID: PMC7237046 DOI: 10.1371/journal.pcbi.1007852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/19/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Single nucleotide polymorphisms are widely associated with disease, but the ways in which they cause altered phenotypes are often unclear, especially when they appear in non-coding regions. One way in which non-coding polymorphisms could cause disease is by affecting crucial RNA-protein interactions. While it is clear that changing a protein binding motif will alter protein binding, it has been shown that single nucleotide polymorphisms can affect RNA secondary structure, and here we show that single nucleotide polymorphisms can affect RNA-protein interactions from outside binding motifs through altered RNA secondary structure. By using a modified version of the Vienna Package and PAR-CLIP data for HuR (ELAVL1) in humans we characterize the genome-wide effect of single nucleotide polymorphisms on HuR binding and show that they can have a many-fold effect on the affinity of HuR binding to RNA transcripts from tens of bases away. We also find some evidence that the effect of single nucleotide polymorphisms on protein binding might be under selection, with the non-reference alleles tending to make it harder for a protein to bind.
Collapse
Affiliation(s)
- Elan Shatoff
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Li Y, Shi X, Cai X, Zhu Y, Chen Y, Lai J. microRNA-422a Inhibits DCC Expression in a Manner Dependent on SNP rs12607853. Cytogenet Genome Res 2020; 160:63-71. [PMID: 32092754 DOI: 10.1159/000506031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
DCC netrin 1 receptor (DCC) affects the structure and function of the dopamine circuitry, which in turn affects the susceptibility to developing addiction. In a previous study, we found that single nucleotide polymorphism (SNP) rs12607853 in the 3' untranslated region (3'-UTR) of DCC was significantly associated with heroin addiction. In the current study, we first used bioinformatics prediction to identify the DCC rs12607853 C allele as a potential hsa-miR-422a and hsa-miR-378c target site. We then used vector construction and dual-luciferase reporter assays to investigate the targeting relationship of DCC rs12607853 with hsa-miR-422a and hsa-miR-378c. The dual-luciferase reporter gene assay confirmed that the C allele of rs12607853 in combination with hsa-miR-422a led to repressed dual-luciferase gene expression. Moreover, gene expression assays disclosed that hsa-miR-422a inhibited DCC expression at both the mRNA and protein levels. We also found that morphine inhibited the expression of hsa-miR-422a but increased the expression of DCC mRNA, and this change in the expression of hsa-miR-422a could not be reversed by naloxone, which suggested that the role of DCC in opioid addiction might be regulated by hsa-miR-422a. In summary, this study improves our understanding of the role of hsa-miR-422a and identifies the genetic basis of rs12607853, which might contribute to the discovery of new biomarkers or therapeutic targets for opioid addiction.
Collapse
|
7
|
Local adaptation fuels cryptic speciation in terrestrial annelids. Mol Phylogenet Evol 2020; 146:106767. [PMID: 32081763 DOI: 10.1016/j.ympev.2020.106767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 11/23/2022]
Abstract
Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna.
Collapse
|
8
|
Zhang Q, Shi M, Tang H, Zhong H, Lu X. κ Opioid Receptor 1 Single Nucleotide Polymorphisms were Associated with the Methadone Dosage. Genet Test Mol Biomarkers 2020; 24:17-23. [PMID: 31940240 DOI: 10.1089/gtmb.2019.0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Heroin use disorder (HUD) is a complex brain disease that includes multiple phenotypes. Heroin acts primarily as a mu-opioid receptor (OPRM1) agonist. The κ opioid receptor 1 (OPRK1) is critically involved in abstinence and remission. Multiple studies confirm that the OPRM1 and OPRK1 genes are associated with HUD. However, their relationship with the addictive phenotype is still unclear. This study was designed to identify the genetic polymorphisms within OPRM1 and OPRK1 with six HUD phenotypes. Methods: A total of 801 patients with HUD were recruited from the Methadone Maintenance Treatment Program in Xi'an. We identified eight potential functional single nucleotide polymorphisms (SNPs) in the two genes that were genotyped using SNaPshot SNP technology. We then performed a case-control association analysis, investigated particular disease phenotypes, and assessed the extent of epistasis among the variants of the two genes. Results: The OPRK1 rs3802279, rs3802281, and rs963549 genotypes were significantly associated with methadone dosage analyzed by Pearson's chi-square test or binary logistic regression to correct for covariates. The rs3802279 CC, rs3802281 TT, and rs963549 CC genotype carriers required a lower methadone maintenance dose per day. Multifactor dimensionality reduction analysis indicated strong interactions between sex and OPRK1 rs963549. The results of the OPRM1 genotyping did not reveal any associations with the various HUD phenotypes. Conclusion: These findings support an important role of the OPRK1 polymorphism in determining the daily methadone dose and may guide future studies in identifying additional genetic risk factors for HUD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Minghai Shi
- Department of Radiology, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Tang
- Department of Gastroenterology, Tangdou Hospital, Air Force Medical University, Xi'an, China
| | - Huijun Zhong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaohong Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Behlmann AM, Goyal NA, Yang X, Chen PH, Ankala A. A Hemizygous Deletion Within the PGK1 Gene in Males with PGK1 Deficiency. JIMD Rep 2018; 45:105-110. [PMID: 30570712 PMCID: PMC6336546 DOI: 10.1007/8904_2018_147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 02/05/2023] Open
Abstract
Phosphoglycerate kinase-1 (PGK1) deficiency is a rare X-linked disorder caused by pathogenic variants in the PGK1 gene. Complete loss-of-function variants have not been reported in this gene, indicating that residual enzyme function is critical for viability in males. Therefore, copy number variants (CNVs) that include single exon or multiple exon deletions or duplications are generally not expected in individuals with PGK1 deficiency. Here we describe a 64-year-old male presenting with a family history (three additional affected males) and a personal history of childhood-onset metabolic myopathy that involves episodes of muscle pain, stiffness after activity, exercise intolerance, and myoglobinuria after exertion. Biochemical analysis on a muscle biopsy indicated significantly reduced activity (15% compared to normal) for phosphoglycerate kinase (PGK1), a glycolytic enzyme encoded by PGK1. A diagnosis of PGK1 deficiency was established by molecular analysis which detected an approximately 886 kb deletion involving the polyadenylation site in the 3'UTR of the PGK1 gene. RNA analysis showed significantly reduced PGK1 transcript levels (30% compared to normal). This is the first deletion reported in the PGK1 gene and is the first pathogenic variant involving the 3'UTR polyadenylation site of this gene. Our report emphasizes the role of 3'UTR variants in human disorders and underscores the need for exploring noncoding regions of disease-associated genes when seeking a molecular diagnosis.
Collapse
Affiliation(s)
- Andrea Medrano Behlmann
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Namita A. Goyal
- grid.266093.80000 0001 0668 7243Department of Neurology, University of California, Irvine, CA USA
| | - Xiaoyu Yang
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Ping H. Chen
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Arunkanth Ankala
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA ,EGL Genetic Diagnostics LLC, Tucker, GA USA
| |
Collapse
|
10
|
Sonon P, Sadissou I, Tokplonou L, M'po KKG, Glitho SSC, Agniwo P, Ibikounlé M, Massaro JD, Massougbodji A, Moreau P, Sabbagh A, Mendes-Junior CT, Moutairou KA, Castelli EC, Courtin D, Donadi EA. HLA-G, -E and -F regulatory and coding region variability and haplotypes in the Beninese Toffin population sample. Mol Immunol 2018; 104:108-127. [PMID: 30448608 DOI: 10.1016/j.molimm.2018.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
HLA-G/E/F genes exhibit immunomodulatory properties and are expressed in placenta. Little attention has been devoted to the study of these genes in sub-Saharan African populations, which are yet the most diverse. To fill this gap, we evaluated the complete gene variability, approximately 5.1 kb for HLA-G (n = 149), 7.7 kb for HLA-E (n = 150) and 6.2 kb for HLA-F (n = 152) in the remote Beninese Toffin population, using massive parallel sequencing. Overall, 96, 37 and 68 variable sites were detected along the entire HLA-G, -E and -F, respectively, arranged into region-specific haplotypes; i.e., promoter haplotypes (16, 19, and 15 respectively), coding haplotypes (19, 15, and 29 respectively), 3' untranslated region (3'UTR) haplotypes (12, 7 and 2, respectively) and extended haplotypes (33, 31 and 32 respectively). All promoter/coding/3'UTR haplotypes followed the patterns already described in worldwide populations. HLA-E was the most conserved, exhibiting mainly two full-length encoded-molecules (E*01:01 and E*01:03), followed by HLA-F, three full-length proteins (F*01:01, F*01:02 and F*01:03) and HLA-G, four proteins: three full-length (G*01:01, G*01:03 and G*01:04) and one truncated (G*01:05N). Although HLA-G/E/F alleles in the Toffin population were the most frequently observed worldwide, the frequencies of the coding haplotypes were closely similar to those described for other African populations (Guinea-Conakry and Burkina-Faso), when compared to non-African ones (Brazilian), indicating that variable sites along these genes were present in Africa before human dispersion.
Collapse
Affiliation(s)
- Paulin Sonon
- Laboratório de Biologia Molecular, Universidade de São Paulo, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Ibrahim Sadissou
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université d'Abomey-Calavi, Cotonou, Benin.
| | - Kuumaaté K G M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Sonya S C Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Moudachirou Ibikounlé
- Université d'Abomey-Calavi, Cotonou, Benin; Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Juliana Doblas Massaro
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Benin.
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; Université Paris-Diderot, Sorbonne Paris-Cité, UMR_E5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Audrey Sabbagh
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, State of São Paulo, Brazil.
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Erick C Castelli
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, State of São Paulo, Brazil.
| | - David Courtin
- UMR 216 MERIT, IRD, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Eduardo A Donadi
- Laboratório de Biologia Molecular, Universidade de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Estado de São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Goswami AM. α-Adducin nsSNPs affect mRNA secondary structure, protein modification and stability. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Flynn LL, Mitrpant C, Pitout IL, Fletcher S, Wilton SD. Antisense Oligonucleotide-Mediated Terminal Intron Retention of the SMN2 Transcript. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:91-102. [PMID: 29858094 PMCID: PMC5854547 DOI: 10.1016/j.omtn.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
The severe childhood disease spinal muscular atrophy (SMA) arises from the homozygous loss of the survival motor neuron 1 gene (SMN1). A homologous gene potentially encoding an identical protein, SMN2 can partially compensate for the loss of SMN1; however, the exclusion of a critical exon in the coding region during mRNA maturation results in insufficient levels of functional protein. The rate of transcription is known to influence the alternative splicing of gene transcripts, with a fast transcription rate correlating to an increase in alternative splicing. Conversely, a slower transcription rate is more likely to result in the inclusion of all exons in the transcript. Targeting SMN2 with antisense oligonucleotides to influence the processing of terminal exon 8 could be a way to slow transcription and induce the inclusion of exon 7. Interestingly, following oligomer treatment of SMA patient fibroblasts, we observed the inclusion of exon 7, as well as intron 7, in the transcript. Because the normal termination codon is located in exon 7, this exon/intron 7-SMN2 transcript should encode the normal protein and only carry a longer 3′ UTR. Further studies showed the extra 3′ UTR length contained a number of regulatory motifs that modify transcript and protein regulation, leading to translational repression of SMN. Although unlikely to provide therapeutic benefit for SMA patients, this novel technique for gene regulation could provide another avenue for the repression of undesirable gene expression in a variety of other diseases.
Collapse
Affiliation(s)
- Loren L Flynn
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia; Department of Biochemistry, Mahidol University, Bangkok, Thailand
| | - Ianthe L Pitout
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| |
Collapse
|
13
|
Re-evaluating Strategies to Define the Immunoregulatory Roles of miRNAs. Trends Immunol 2017; 38:558-566. [PMID: 28666937 DOI: 10.1016/j.it.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
miRNAs play an important role in fine-tuning host immune homeostasis and responses through the regulation of mRNA stability and translation. Studies have demonstrated that miRNA-mediated regulation of gene expression has a profound impact on immune cell development, function, and response to invading pathogens. As we continue to examine the mechanisms by which miRNAs maintain the balance between robust protective host immune responses and dysregulated responses that promote immune pathology, careful consideration of the complexity of post-transcriptional immune regulation is needed. Distinct tissue- and stimulus-specific RNA-RNA and RNA-protein interactions can modulate the functions of a given miRNA. Thus, new challenges emerge in the identification of post-transcriptional coregulatory modules and the genetic factors that impact miRNA function.
Collapse
|
14
|
3'-UTR SNP rs2229611 in G6PC1 affects mRNA stability, expression and Glycogen Storage Disease type-Ia risk. Clin Chim Acta 2017; 471:46-54. [PMID: 28502559 DOI: 10.1016/j.cca.2017.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P=0.0195) with CC compared to TT/TC genotypes, whereas no such correlation was observed with breast cancer cases. We observed a strong linkage disequilibrium (LD) among rs2229611 and other disease causing G6PC1 variants (|D'|=1, r2=1). Functional validation performed in HepG2 cells using luciferase constructs showed significant (P<0.05) decrease in expression than wild-type 3'-UTR due to curtailed mRNA stability. Furthermore, AU-rich elements (AREs) mediated regulation of G6PC1 expression characterized using 3'-UTR deletion constructs showed a prominent decrease in mRNA stability. We then examined whether miRNAs are involved in controlling G6PC1 expression using pmirGLO-UTR constructs, with evidence of more distinct inhibition in the reporter function with rs2229611. These data suggests that rs2229611 is a crucial regulatory SNP which in homozygous state leads to a more aggressive disease phenotype in GSD-Ia patients. The implication of this result is significant in predicting disease onset, progression and response to disease modifying treatments in patients with GSD-Ia.
Collapse
|
15
|
Zayani N, Hamdouni H, Boumaiza I, Achour O, Neffati F, Omezzine A, Najjar MF, Bouslama A. Resistin polymorphims, plasma resistin levels and obesity in Tunisian volunteers. J Clin Lab Anal 2017; 32. [PMID: 28393393 DOI: 10.1002/jcla.22227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/07/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Adipose tissue is an important endocrine organ that secretes a number of adipokines, like Resistin (RETN); it's an adipocytes-secreted cytokine and has been proposed as a link between obesity and diabetes. Many resistin gene polymorphisms were described and their implication in obesity was controversial. This study was to investigate the prevalence of single nucleotide polymorphisms (SNPs) in RETN gene 420C/G; 44G/A; 62G/A; 394C/G and 299 G/A and their association with Resistin level and obesity in Tunisian volunteers. METHODS We recruited 169 nonobese (mean age=42.16-14.26 years; mean body mass index [BMI]=24.51-3.69 kg/m2 ) and 160 obese (mean age=47.86-11.17 years; mean BMI=36-4.78 kg/m2 ). Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Anthropometric parameters, lipid levels, Glycemia and insulinemia were measured, BMI was calculated and insulinresistance was evaluated with the homeostasis model assessment insulin resistance (HOMA-IR) and resistin level was measured by ELISA. Statistical analyses were performed by SPSS19.0. RESULTS After adjustment for confounding parameters; the Odds Ratio (OR) of obesity associated with mutated genotypes at 420C/G compared with normal genotype was as: OR=2.17; 95% CI [1.28-3.68], P=.004. The serum Resistin levels present no significant association with all RETN polymorphisms and it was significantly associated with BMI (P=.047). In our haplotype analysis, one haplotype seems to be protective and one other seems to be the highest risk to obesity. CONCLUSION The 420 C/G Polymorphism were associated with obesity and Leptin concentration in our population.
Collapse
Affiliation(s)
- Nesrine Zayani
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Haithem Hamdouni
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Imen Boumaiza
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ons Achour
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Fadoua Neffati
- Laboratory of Biochemistry and Toxicology, Monastir's University Hospital, Monastir, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Mohamed Fadhel Najjar
- Laboratory of Biochemistry and Toxicology, Monastir's University Hospital, Monastir, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
16
|
Zhang XM, Zha GM, Wang J, Wang XJ, Song S, Shu JC, Chu BB, Yang GY. Comparation of the effects of different 5'-untranslated regions (UTRs) on gene expression in HEK293 cells. Biotechnol Lett 2016; 38:2051-2057. [PMID: 27580891 DOI: 10.1007/s10529-016-2199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate four 5'-UTRs on GFP expression in HEK293T cells. RESULTS The recombinant plasmids were constructed by restriction enzyme digestion, digestion and DNA sequencing. Quantitative real-time PCR and western blotting results showed that the transcription and translation level of PPRV-GFP mRNA was significantly lower than that of the other reporters. The transcription and translation level of ChEF1-GFP was the highest in HEK293T cells. CONCLUSIONS Different UTRs can significantly affect protein expression. Additionally, the findings also will be useful in biological applications that require tuning of gene expression and system optimization.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Jiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Xin-Jian Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Shuang Song
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Jing-Chao Shu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Bei-Bei Chu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China. .,College of Animal Husbandary and Veterinary Science, Henan Agricultural University, Wenhua Road 95, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
17
|
Li Y, Qiao X, Yin F, Guo H, Huang X, Lai J, Wei S. A Population-Based Study of Four Genes Associated with Heroin Addiction in Han Chinese. PLoS One 2016; 11:e0163668. [PMID: 27676367 PMCID: PMC5038970 DOI: 10.1371/journal.pone.0163668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that variants in FAT atypical cadherin 3 (FAT3), kinectin 1 (KTN1), discs large homolog2 (DLG2) and deleted in colorectal cancer (DCC) genes influence the structure of the human mesolimbic reward system. We conducted a systematic analysis of the potential functional single nucleotide polymorphisms (SNPs) in these genes associated with heroin addiction. We scanned the functional regions of these genes and identified 20 SNPs for genotyping by using the SNaPshot method. A total of 1080 samples, comprising 523 cases and 557 controls, were analyzed. We observed that DCC rs16956878, rs12607853, and rs2292043 were associated with heroin addiction. The T alleles of rs16956878 (p = 0.0004) and rs12607853 (p = 0.002) were significantly enriched in the case group compared with the controls. A lower incidence of the C allele of rs2292043 (p = 0.002) was observed in the case group. In block 2 of DCC (rs2292043-rs12607853-rs16956878), the frequency of the T-T-T haplotype was significantly higher in the case group than in the control group (p = 0.024), and fewer C-C-C haplotypes (p = 0.006) were detected in the case group. DCC may be an important candidate gene in heroin addiction, and rs16956878, rs12607853, and rs2292043 may be risk factors, thereby providing a basis for further genetic and biological research.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Xiaomeng Qiao
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Hao Guo
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Xin Huang
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, PR China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, PR China
- * E-mail:
| |
Collapse
|
18
|
Kim JH, Lee C, Cheong HS, Koh Y, Ahn KS, Kim HL, Shin HD, Yoon SS. SLC29A1 (ENT1) polymorphisms and outcome of complete remission in acute myeloid leukemia. Cancer Chemother Pharmacol 2016; 78:533-40. [DOI: 10.1007/s00280-016-3103-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023]
|
19
|
Aslar Oner D, Tastan H. Association of MSX1 c.*6C > T Variant with Nonsyndromic Cleft Lip With or Without Cleft Palate in Turkish Patients. Genet Test Mol Biomarkers 2016; 20:402-5. [DOI: 10.1089/gtmb.2015.0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Deniz Aslar Oner
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Hakki Tastan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
20
|
Guo C, Xue Y, Yang G, Yin S, Shi W, Cheng Y, Yan X, Fan S, Zhang H, Zeng F. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells. Cell Biol Int 2016; 40:847-60. [PMID: 26289635 DOI: 10.1002/cbin.10539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Abstract
Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs.
Collapse
Affiliation(s)
- Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shang Yin
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wansheng Shi
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cheng
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoshuang Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shuyue Fan
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Zhang
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Movassat M, Crabb TL, Busch A, Yao C, Reynolds DJ, Shi Y, Hertel KJ. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns. RNA Biol 2016; 13:646-55. [PMID: 27245359 DOI: 10.1080/15476286.2016.1191727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.
Collapse
Affiliation(s)
- Maliheh Movassat
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Tara L Crabb
- b Institute of Molecular Biology (IMB) , Mainz , Germany
| | - Anke Busch
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA.,b Institute of Molecular Biology (IMB) , Mainz , Germany
| | - Chengguo Yao
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Derrick J Reynolds
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Yongsheng Shi
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Klemens J Hertel
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
22
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
23
|
Malodobra-Mazur M, Bednarska-Chabowska D, Olewinski R, Chmielecki Z, Adamiec R, Dobosz T. Single nucleotide polymorphisms in 5′-UTR of the SLC2A4 gene regulate solute carrier family 2 member 4 gene expression in visceral adipose tissue. Gene 2016; 576:499-504. [DOI: 10.1016/j.gene.2015.10.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022]
|
24
|
Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, Zampetaki A, Yin X, Mayr M, Mori K, Wang W, Hu Y, Xu Q. XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2134-44. [PMID: 26315405 DOI: 10.1161/atvbaha.115.305420] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/16/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation. CONCLUSIONS This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.
Collapse
Affiliation(s)
- Lingfang Zeng
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| | - Yi Li
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Juanyao Yang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Gang Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Andriana Margariti
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingzhong Xiao
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Anna Zampetaki
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Xiaoke Yin
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Manuel Mayr
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Kazutoshi Mori
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Wen Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| |
Collapse
|
25
|
Kelemen LE, Lawrenson K, Tyrer J, Li Q, Lee JM, Seo JH, Phelan CM, Beesley J, Chen X, Spindler TJ, Aben KKH, Anton-Culver H, Antonenkova N. Genome-wide significant risk associations for mucinous ovarian carcinoma. Nat Genet 2015; 47:888-97. [PMID: 26075790 PMCID: PMC4520768 DOI: 10.1038/ng.3336] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at 2q31.1 (P = 7.5 × 10(-12)) and rs688187 at 19q13.2 (P = 6.8 × 10(-13)). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10(-4), false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.
Collapse
|
26
|
Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA, Burt DW. Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 2015; 22:205-17. [PMID: 25926514 PMCID: PMC4463845 DOI: 10.1093/dnares/dsv005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
Next-generation sequencing has prompted a surge of discovery of millions of genetic variants from vertebrate genomes. Besides applications in genetic association and linkage studies, a fraction of these variants will have functional consequences. This study describes detection and characterization of 15 million SNPs from chicken genome with the goal to predict variants with potential functional implications (pfVars) from both coding and non-coding regions. The study reports: 183K amino acid-altering SNPs of which 48% predicted as evolutionary intolerant, 13K splicing variants, 51K likely to alter RNA secondary structures, 500K within most conserved elements and 3K from non-coding RNAs. Regions of local fixation within commercial broiler and layer lines were investigated as potential selective sweeps using genome-wide SNP data. Relationships with phenotypes, if any, of the pfVars were explored by overlaying the sweep regions with known QTLs. Based on this, the candidate genes and/or causal mutations for a number of important traits are discussed. Although the fixed variants within sweep regions were enriched with non-coding SNPs, some non-synonymous-intolerant mutations reached fixation, suggesting their possible adaptive advantage. The results presented in this study are expected to have important implications for future genomic research to identify candidate causal mutations and in poultry breeding.
Collapse
Affiliation(s)
- Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Clarissa Boschiero
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hannah Ralph
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
27
|
Hong BB, Chen SQ, Qi YL, Zhu JW, Lin JY. Association of THBS1 rs1478605 T>C in 5'-untranslated regions with the development and progression of gastric cancer. Biomed Rep 2015; 3:207-214. [PMID: 26075074 DOI: 10.3892/br.2015.414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin 1 (THBS1) plays an important role in angiogenesis and tumor progression. The aim of the present study was to investigate the effects of single-nucleotide polymorphisms (rs1478605 and rs3743125) in the untranslated regions of the THBS1 gene on the development and progression of gastric cancer. In the case-control study, 275 gastric cancer patients and 275 cancer-free controls were successfully genotyped using polymerase chain reaction-restriction fragment length polymorphism. The data demonstrated that THBS1 rs1478605 genotypic distributions significantly differed between the patient and control groups (P=0.005). Carriers of the CC genotype exhibited a decreased risk of developing gastric cancer compared to the carriers of the CT and TT genotypes [adjusted odd ratio (OR), 0.56; 95% confidence interval (CI), 0.39-0.79; P=0.001]. The CC genotype of rs1478605 was negatively associated with gastric cancer lymph node metastasis (OR, 0.41; 95% CI, 0.23-0.71; P=0.001) and was associated with a reduced risk of lymph node metastasis in male patients (OR, 0.27; 95% CI, 0.14-0.52; P<0.001). The THBS1 CT haplotype was associated with a reduced risk of developing gastric cancer (OR, 0.56; 95% CI, 0.33-0.93; P=0.02). By contrast, no association was observed between THBS1 rs3743125 and the development and progression of gastric cancer. These results suggest that THBS1 rs1478605 represents a potential molecular marker for gastric cancer.
Collapse
Affiliation(s)
- Bin-Bin Hong
- Central Laboratory of The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shu-Qin Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China ; Department of Pathology, Pre-Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yuan-Lin Qi
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jin-Wei Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jian-Yin Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
28
|
IL-17 gene polymorphism is associated with susceptibility to gastric cancer. Tumour Biol 2014; 35:10025-30. [DOI: 10.1007/s13277-014-2255-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022] Open
|
29
|
Yu D, Xu L, Peng L, Chen SY, Liu YP, Yao YG. Genetic variations of mitochondrial antiviral signaling gene (MAVS) in domestic chickens. Gene 2014; 545:226-32. [DOI: 10.1016/j.gene.2014.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022]
|
30
|
Kandaswamy R, McQuillin A, Curtis D, Gurling H. Allelic association, DNA resequencing and copy number variation at the metabotropic glutamate receptor GRM7 gene locus in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:365-72. [PMID: 24804643 PMCID: PMC4231221 DOI: 10.1002/ajmg.b.32239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
Genetic markers at the GRM7 gene have shown allelic association with bipolar disorder (BP) in several case-control samples including our own sample. In this report, we present results of resequencing the GRM7 gene in 32 bipolar samples and 32 random controls selected from 553 bipolar cases and 547 control samples (UCL1). Novel and potential etiological base pair changes discovered by resequencing were genotyped in the entire UCL case-control sample. We also report on the association between GRM7 and BP in a second sample of 593 patients and 642 controls (UCL2). The three most significantly associated SNPs in the original UCL1 BP GWAS sample were genotyped in the UCL2 sample, of which none were associated. After combining the genotype data for the two samples only two (rs1508724 and rs6769814) of the original three SNP markers remained significantly associated with BP. DNA sequencing revealed mutations in three cases which were absent in control subjects. A 3'-UTR SNP rs56173829 was found to be significantly associated with BP in the whole UCL sample (P = 0.035; OR = 0.482), the rare allele being less common in cases compared to controls. Bioinformatic analyses predicted a change in the centroid secondary structure of RNA and alterations in the miRNA binding sites for the mutated base of rs56173829. We also validated two deletions and a duplication within GRM7 using quantitative-PCR which provides further support for the pre-existing evidence that copy number variants at GRM7 may have a role in the etiology of BP.
Collapse
Affiliation(s)
- Radhika Kandaswamy
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK,* Correspondence to: Andrew McQuillin, Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, Rockefeller Building, 21 University Street, London WC1E 6BT, UK. E-mail:
| | - David Curtis
- Department of Psychological Medicine, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Hugh Gurling
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK
| |
Collapse
|
31
|
Gu W, Li M, Xu Y, Wang T, Ko JH, Zhou T. The impact of RNA structure on coding sequence evolution in both bacteria and eukaryotes. BMC Evol Biol 2014; 14:87. [PMID: 24758737 PMCID: PMC4021280 DOI: 10.1186/1471-2148-14-87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/07/2014] [Indexed: 12/03/2022] Open
Abstract
Background Many studies have found functional RNA secondary structures are selectively conserved among species. But, the effect of RNA structure selection on coding sequence evolution remains unknown. To address this problem, we systematically investigated the relationship between nucleotide conservation level and its structural sensitivity in four model organisms, Escherichia coli, yeast, fly, and mouse. Results We define structurally sensitive sites as those with putative local structure-disruptive mutations. Using both the Mantel-Haenszel procedure and association test, we found structurally sensitive nucleotide sites evolved more slowly than non-sensitive sites in all four organisms. Furthermore, we observed that this association is more obvious in highly expressed genes and region near the start codon. Conclusion We conclude that structurally sensitive sites in mRNA sequences normally have less nucleotide divergence in all species we analyzed. This study extends our understanding of the impact of RNA structure on coding sequence evolution, and is helpful to the development of a codon model with RNA structure information.
Collapse
Affiliation(s)
- Wanjun Gu
- Research Center for Learning Sciences, Southeast University, Nanjing, Jiangsu 210096, China.
| | | | | | | | | | | |
Collapse
|
32
|
Zhao R, Song Z, Dong R, Li H, Shen C, Zheng S. Polymorphism of ITGB2 gene 3'-UTR+145C/A is associated with biliary atresia. Digestion 2014; 88:65-71. [PMID: 23921155 DOI: 10.1159/000352025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/13/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND STUDY AIMS Biliary atresia (BA) is a devastating disease of infants, invariably leading to cirrhosis, end-stage liver disease, and death if untreated. The etiology of BA is unknown, although infectious, immune, and genetic causes have been suggested. This study was designed to investigate whether polymorphism of the ITGB2 (CD18) gene is associated with susceptibility to BA. METHODS The ITGB2 gene promoter and 16 exons were genotyped following amplification and sequencing, with associations assessed using Fischer's exact test in 106 patients diagnosed with BA and 108 unrelated healthy controls. RESULTS We found one single nucleotide polymorphism (SNP) in the ITGB2 promoter region (-680 C/T) and five SNPs in exons, including: -111 T/C in exon 1, 117 G/A in exon 3, 819 G/A in exon 7, 1101 C/A in exon 10, and 3'-UTR+145C/A in exon 16. There were no significant differences in genotype and allelic frequencies of any of the SNPs between controls and patients with BA in both the promoter and exons 1, 3, 7, and 10. 3'-UTR+145C/A showed a significant increase in the C allele frequency (OR = 2.19, 95% CI: 1.39-3.46, p = 0.0006) and a significant increase in the CC genotype (p = 0.001) in BA patients compared with healthy controls. Using a reporter gene assay, the construct that contained the risk allele (3'-UTR+145 C) showed significantly higher luciferase activity than the nonrisk A allele (p = 0.007). CONCLUSION Our study provides the first evidence of a possible role of ITGB2 3'-UTR+145C/A polymorphism in the pathogenesis of BA.
Collapse
|
33
|
Savan R. Post-transcriptional regulation of interferons and their signaling pathways. J Interferon Cytokine Res 2014; 34:318-29. [PMID: 24702117 DOI: 10.1089/jir.2013.0117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3' untranslated regions (3' UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ~22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3' UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3' UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology, School of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
34
|
Felício LP, Porto IOP, Mendes-Junior CT, Veiga-Castelli LC, Santos KE, Vianello-Brondani RP, Sabbagh A, Moreau P, Donadi EA, Castelli EC. Worldwide HLA-E nucleotide and haplotype variability reveals a conserved gene for coding and 3' untranslated regions. TISSUE ANTIGENS 2014; 83:82-93. [PMID: 24400773 DOI: 10.1111/tan.12283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/05/2013] [Accepted: 12/03/2013] [Indexed: 11/29/2022]
Abstract
The human leukocyte antigen-E (HLA-E) locus is a human major histocompatibility complex (MHC) gene associated with immune-modulation and suppression of the immune response by the interaction with specific natural killer (NK) and T cell receptors (TCRs). It is considered one of the most conserved genes of the human MHC; however, this low nucleotide variability seems to be a consequence of the scarce number of studies focusing on this subject. In this manuscript we assessed the nucleotide variability at the HLA-E coding and 3' untranslated regions (3'UTRs) in Brazil and in the populations from the 1000Genomes Consortium. Twenty-eight variable sites arranged into 33 haplotypes were detected and most of these haplotypes (98.2%) are encoding one of the two HLA-E molecules found worldwide, E*01:01 and E*01:03. Moreover, three worldwide spread haplotypes, associated with the coding alleles E*01:01:01, E*01:03:01 and E*01:03:02, account for 85% of all HLA-E haplotypes, suggesting that they arose early before human speciation. In addition, the low nucleotide diversity found for the HLA-E coding and 3'UTR in worldwide populations suggests that the HLA-E gene is in fact a conserved gene, which might be a consequence of its key role in the modulation of the immune system.
Collapse
Affiliation(s)
- L P Felício
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McFarland AP, Horner SM, Jarret A, Joslyn RC, Bindewald E, Shapiro BA, Delker DA, Hagedorn CH, Carrington M, Gale M, Savan R. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nat Immunol 2014; 15:72-9. [PMID: 24241692 PMCID: PMC4183367 DOI: 10.1038/ni.2758] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022]
Abstract
IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.
Collapse
Affiliation(s)
- Adelle P McFarland
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Stacy M Horner
- 1] Department of Immunology, University of Washington, Seattle, Washington, USA. [2]
| | - Abigail Jarret
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Rochelle C Joslyn
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Don A Delker
- Divison of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Curt H Hagedorn
- 1] Divison of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Utah, Salt Lake City, Utah, USA. [2]
| | - Mary Carrington
- 1] Cancer and Inflammation Program, Laboratory of Experimental Immunology, Science Applications International Corporation-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. [2] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
Mulholland CV, Somogyi AA, Barratt DT, Coller JK, Hutchinson MR, Jacobson GM, Cursons RT, Sleigh JW. Association of innate immune single-nucleotide polymorphisms with the electroencephalogram during desflurane general anaesthesia. J Mol Neurosci 2013; 52:497-506. [PMID: 24352713 DOI: 10.1007/s12031-013-0201-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/01/2013] [Indexed: 11/24/2022]
Abstract
The electroencephalogram (EEG) records the electrical activity of the brain and enables effects of anaesthetic drugs on brain functioning to be monitored. Identification of genes contributing to EEG variability during anaesthesia is important to the clinical application of anaesthesia monitoring and may provide an avenue to identify molecular mechanisms underlying the generation and regulation of brain oscillations. Central immune signalling can impact neuronal activity in the brain and accumulating evidence suggests an important role for cytokines as neuronal modulators. We tested 21 single-nucleotide polymorphisms (SNPs) in immune-related genes for associations with three anaesthesia-induced EEG patterns; spindle amplitude, delta power and alpha power, during general anaesthesia with desflurane in 111 patients undergoing general, gynaecological or orthopaedic surgery. Wide inter-patient variability was observed for all EEG variables. MYD88 rs6853 (p = 6.7 × 10(-4)) and IL-1β rs1143627 in conjunction with rs6853 (p = 1.5 × 10(-3)) were associated with spindle amplitude, and IL-10 rs1800896 was associated with delta power (p = 1.3 × 10(-2)) suggesting involvement of cytokine signalling in modulation of EEG patterns during desflurane anaesthesia. BDNF rs6265 was associated with alpha power (p = 3.9 × 10(-3)), suggesting differences in neuronal plasticity might also influence EEG patterns during desflurane anaesthesia. This is the first study we are aware of that has investigated genetic polymorphisms that may influence the EEG during general anaesthesia.
Collapse
|
37
|
Muiya N, Al-Najai M, Tahir AI, Elhawari S, Gueco D, Andres E, Mazhar N, Altassan N, Meyer BF, Alshahid M, Dzimiri N. The 3'-UTR of the adiponectin Q gene harbours susceptibility loci for atherosclerosis and its metabolic risk traits. BMC MEDICAL GENETICS 2013; 14:127. [PMID: 24330659 PMCID: PMC3925068 DOI: 10.1186/1471-2350-14-127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/28/2013] [Indexed: 12/25/2022]
Abstract
Background Adiponectin Q is a hormone that modulates several metabolic processes and contributes to the suppression of biochemical pathways leading to metabolic syndrome. Hence, polymorphic changes in the adiponectin Q (ADIPOQ) gene are likely to contribute to metabolic disorders, and consequently lead to atherosclerosis. In the present study, we performed a population-based association study for 8 SNPs in 4646 Saudi individuals (2339 CAD cases versus angiographed 2307 controls) by real-time PCR. Methods Linkage analysis was done by the Affymetrix Gene Chip array, sequencing by the MegaBACE DNA analysis system and genotyping accomplished by TaqMan chemistry with the Applied Biosystem real-time Prism 7900HT Sequence Detection System. Results The rs2241766 (TG + GG) [Odds ratio(95% Confidence Interval = 1.35(1.01-1.72); p = 0.015] and rs9842733A > T [1.48(1.01-2.07); p = 0.042] were associated with hypertension [HTN; 3541 cases vs 1101 controls), following adjustment for the presence of other cardiovascular risk traits. The rs2241766 (TG + GG) was further implicated in harbouring of low high density lipoprotein levels (LHDL; 1353 versus 2156 controls) [1.35(1.10-1.67); p = 0.005], but lost its association with obesity after the adjustment for confounders. Besides, low high density lipoprotein was also linked with rs6444174 (TC + CC) [1.28(1.05-1.59)]. On the other hand, while initial univariate logistic regression analysis pointed to rs1063537 C > T (p = 0.010), rs2082940 C > T (p = 0.035) and rs1063539 G > C (p = 0.035) as being associated with myocardial infarction, significance levels of these relationships were diminished following adjustment for the influence of confounding covariates. Interestingly, haplotyping showed that an 8-mer haplotype GTGCCTCA and several of its derivatives constructed from the studied SNPs were commonly implicated in MI (χ2 = 4.12; p = 0.042), HTN (χ2 = 6.40; p = 0.011) and OBS (χ2 = 5.18; p = 0.023). Conclusion These results demonstrate that the ADIPOQ 3′UTR harbours common susceptibility variants for metabolic risk traits and CAD, pointing to the importance of this region in atherosclerosis disease pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, P,O, Box 3354, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
38
|
Park TJ, Kim JH, Pasaje CF, Park BL, Bae JS, Uh ST, Kim YH, Kim MK, Choi IS, Choi BW, Shin HR, Park JS, Koh I, Park CS, Shin HD. Polymorphisms of ATF6B Are Potentially Associated With FEV1 Decline by Aspirin Provocation in Asthmatics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 6:142-8. [PMID: 24587951 PMCID: PMC3936043 DOI: 10.4168/aair.2014.6.2.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/01/2013] [Accepted: 05/22/2013] [Indexed: 01/08/2023]
Abstract
Purpose Endoplasmic reticulum (ER) stress has recently been observed to activate NF-kappaB and induce inflammatory responses such as asthma. Activating transcription factor 6β (ATF6B) is known to regulate ATFα-mediated ER stress response. The aim of this study is to investigate the associations of ATF6B genetic variants with aspirin-exacerbated respiratory disease (AERD) and its major phenotype, % decline of FEV1 by aspirin provocation. Methods Four common single nucleotide polymorphisms (SNPs) of ATF6B were genotyped and statistically analyzed in 93 AERD patients and 96 aspirin-tolerant asthma (ATA) as controls. Results Logistic analysis revealed that 2 SNPs (rs2228628 and rs8111, P=0.008; corrected P=0.03) and 1 haplotype (ATF6B-ht4, P=0.005; corrected P=0.02) were significantly associated with % decline of FEV1 by aspirin provocation, whereas ATF6B polymorphisms and haplotypes were not associated with the risk of AERD. Conclusions Although further functional and replication studies are needed, our preliminary findings suggest that ATF6B may be related to obstructive phenotypes in response to aspirin exposure in adult asthmatics.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | | | - Byung-Lae Park
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea
| | - Joon Seol Bae
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea
| | - Soo-Taek Uh
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yong-Hoon Kim
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mi-Kyeong Kim
- Department of Internal Medicine, Chungbuk National University, College of Medicine, Cheongju, Korea
| | - Inseon S Choi
- Department of Allergy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, Korea
| | - Byoung Whui Choi
- Division of Pulmonary and Allergy, Department of Internal Medicine, Chung-Ang University Yongsan Hospital, Seoul, Korea
| | - Hye-Rim Shin
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jong-Sook Park
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Insong Koh
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Korea
| | - Choon-Sik Park
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Korea. ; Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea
| |
Collapse
|
39
|
Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat 2013; 34:546-56. [PMID: 23315997 PMCID: PMC3708107 DOI: 10.1002/humu.22273] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 02/05/2023]
Abstract
Structural characteristics are essential for the functioning of many noncoding RNAs and cis-regulatory elements of mRNAs. SNPs may disrupt these structures, interfere with their molecular function, and hence cause a phenotypic effect. RNA folding algorithms can provide detailed insights into structural effects of SNPs. The global measures employed so far suffer from limited accuracy of folding programs on large RNAs and are computationally too demanding for genome-wide applications. Here, we present a strategy that focuses on the local regions of maximal structural change between mutant and wild-type. These local regions are approximated in a “screening mode” that is intended for genome-wide applications. Furthermore, localized regions are identified as those with maximal discrepancy. The mutation effects are quantified in terms of empirical P values. To this end, the RNAsnp software uses extensive precomputed tables of the distribution of SNP effects as function of length and GC content. RNAsnp thus achieves both a noise reduction and speed-up of several orders of magnitude over shuffling-based approaches. On a data set comprising 501 SNPs associated with human-inherited diseases, we predict 54 to have significant local structural effect in the untranslated region of mRNAs. RNAsnp is available at http://rth.dk/resources/rnasnp.
Collapse
|
40
|
Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants. Pediatr Infect Dis J 2013; 32:898-904. [PMID: 23518821 PMCID: PMC3714365 DOI: 10.1097/inf.0b013e31828fc693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ureaplasma spp. respiratory tract colonization is a risk factor for bronchopulmonary dysplasia (BPD) in preterm infants, but differences in host susceptibility have not been elucidated. We hypothesized that variants in genes regulating the innate immune response are associated with altered risk for Ureaplasma spp. respiratory colonization and BPD in preterm infants. METHODS Twenty-four tag single nucleotide polymorphisms (SNPs) from Toll-like receptor (TLR)1, TLR2, TLR4 and TLR6 were assayed in 298 infants <33 weeks gestation who had serial respiratory cultures for Ureaplasma spp. and were evaluated for BPD. RESULTS The majority of subjects (N = 205 [70%]) were African-American. One hundred ten (37%) were Ureaplasma positive. Four SNPs in TLR2 and TLR6 were significantly associated with Ureaplasma respiratory tract colonization. Single SNPs in TLR2, TLR4 and TLR6 were associated with BPD. TLR6 SNP rs5743827 was associated with both a decreased risk for Ureaplasma respiratory tract colonization and decreased risk for BPD (odds ratio: 0.54 [0.34-0.86] and odds ratio: 0.54 [0.31-0.95], respectively). There was a significant additive interaction between Ureaplasma colonization and genotype at TLR6 SNP rs5743827 (Padditive = 0.023), with an attributable proportion due to interaction of 0.542. CONCLUSIONS Polymorphisms in host defense genes may alter susceptibility to Ureaplasma infection and severity of the inflammatory response contributing to BPD. These observations implicate host genetic susceptibility as a major factor in BPD pathogenesis in Ureaplasma-infected preterms.
Collapse
|
41
|
Lipoprotein lipase gene polymorphism rs1059611 functionally influences serum lipid concentrations. Atherosclerosis 2013; 229:511-6. [DOI: 10.1016/j.atherosclerosis.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/07/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023]
|
42
|
Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Res 2013; 41:W475-9. [PMID: 23630321 PMCID: PMC3977658 DOI: 10.1093/nar/gkt291] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The function of many non-coding RNA genes and cis-regulatory elements of messenger RNA largely depends on the structure, which is in turn determined by their sequence. Single nucleotide polymorphisms (SNPs) and other mutations may disrupt the RNA structure, interfere with the molecular function and hence cause a phenotypic effect. RNAsnp is an efficient method to predict the effect of SNPs on local RNA secondary structure based on the RNA folding algorithms implemented in the Vienna RNA package. The SNP effects are quantified in terms of empirical P-values, which, for computational efficiency, are derived from extensive pre-computed tables of distributions of substitution effects as a function of gene length and GC content. Here, we present a web service that not only provides an interface for RNAsnp but also features a graphical output representation. In addition, the web server is connected to a local mirror of the UCSC genome browser database that enables the users to select the genomic sequences for analysis and visualize the results directly in the UCSC genome browser. The RNAsnp web server is freely available at: http://rth.dk/resources/rnasnp/.
Collapse
Affiliation(s)
- Radhakrishnan Sabarinathan
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
44
|
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613-34. [PMID: 22538991 PMCID: PMC3474909 DOI: 10.1007/s00018-012-0990-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as "junk DNA", it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5' and 3' untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This review discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Collapse
Affiliation(s)
- Lucy W Barrett
- Centre for Neuromuscular and Neurological Disorders (CNND), The University of Western Australia (M518), 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
45
|
Chen XS, Brown CM. Computational identification of new structured cis-regulatory elements in the 3'-untranslated region of human protein coding genes. Nucleic Acids Res 2012; 40:8862-73. [PMID: 22821558 PMCID: PMC3467077 DOI: 10.1093/nar/gks684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 01/14/2023] Open
Abstract
Messenger ribonucleic acids (RNAs) contain a large number of cis-regulatory RNA elements that function in many types of post-transcriptional regulation. These cis-regulatory elements are often characterized by conserved structures and/or sequences. Although some classes are well known, given the wide range of RNA-interacting proteins in eukaryotes, it is likely that many new classes of cis-regulatory elements are yet to be discovered. An approach to this is to use computational methods that have the advantage of analysing genomic data, particularly comparative data on a large scale. In this study, a set of structural discovery algorithms was applied followed by support vector machine (SVM) classification. We trained a new classification model (CisRNA-SVM) on a set of known structured cis-regulatory elements from 3'-untranslated regions (UTRs) and successfully distinguished these and groups of cis-regulatory elements not been strained on from control genomic and shuffled sequences. The new method outperformed previous methods in classification of cis-regulatory RNA elements. This model was then used to predict new elements from cross-species conserved regions of human 3'-UTRs. Clustering of these elements identified new classes of potential cis-regulatory elements. The model, training and testing sets and novel human predictions are available at: http://mRNA.otago.ac.nz/CisRNA-SVM.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Department of Biochemistry and Genetics Otago, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
46
|
Kim JH, Park BL, Cheong HS, Pasaje CFA, Bae JS, Park JS, Uh ST, Kim YH, Kim MK, Choi IS, Choi BW, Park CS, Shin HD. HLA-DRA polymorphisms associated with risk of nasal polyposis in asthmatic patients. Am J Rhinol Allergy 2012; 26:12-7. [PMID: 22391069 DOI: 10.2500/ajra.2012.26.3692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nasal polyps, part of the aspirin triad symptoms, are edematous protrusions arising from the mucosa of the nasal sinuses. Although the causative factors and pathogenesis of the polyps are unknown, the significant effect of human leukocyte antigen-DR (HLA-DR) expression in nasal polyps and genetic associations of the major histocompatibility complex class II, DR alpha (HLA-DRA) with immune-mediated diseases have been revealed. METHODS To investigate the associations of HLA-DRA polymorphisms with nasal polyposis in asthmatic patients and in aspirin-hypersensitive subgroups, 22 single nucleotide polymorphisms (SNPs) were genotyped in a total of 467 asthmatic patients including 158 nasal polyp-positive and 309 polyp-negative subjects. RESULTS Statistical analysis showed that four SNPs (p = 0.0005-0.02; Pcorr = 0.009-0.033) and one haplotype (p = 0.002; Pcorr = 0.029) were significantly associated with the presence of nasal polyposis in asthmatic patients. In further analysis, although significant signals disappeared after corrections for multiple testing, two HLA-DRA polymorphisms (rs9268644C>A, rs3129878A>C) were found to be potential markers for nasal polyp development in aspirin-tolerant asthma (p = 0.005 and 0.007, respectively) compared with the aspirin-exacerbated respiratory disease (p > 0.05) subgroup. In silico analysis predicted major "C" allele of rs14004C>A in 5'-untranslated region as a potential binding site for regulatory glucocorticoid receptor. In addition, sequence nearby rs1051336G>A is suspected to be a pyrimidine-rich element that affects mRNA stability. CONCLUSION Despite the need for replication in larger cohorts and/or functional evaluations, our findings suggest that HLA-DRA polymorphisms might contribute to nasal polyposis susceptibility in patients with asthma.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Teng YN, Chang YP, Tseng JT, Kuo PH, Lee IW, Lee MS, Kuo PL. A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod 2012; 27:2857-65. [PMID: 22752612 DOI: 10.1093/humrep/des227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Deleted in AZoospermia-like (DAZL) is an autosomal homologue of Y chromosome-linked DAZ gene located on chromosome 3p24. DAZL is only expressed in the gonads and is critical to germ cell development in different species. However, the regulation of DAZL has not been explored. METHODS Reporter assays, electrophoretic mobility shift assays, supershift assays and bisulfate sequencing were used to identify the core promoter region of DAZL. Sequence analysis was used to identify single-nucleotide polymorphisms (SNPs) in the promoter region. A total of 337 infertile men with abnormal semen parameters and 203 fertile men with normal semen parameters were subjected to sequence analysis of the DAZL promoter region. RESULTS The DAZL gene core promoter is located 1 kb upstream of the transcription start site. Three SNPs (-792G>A, -669A>C and -309T>C) were identified in our population. Of these three SNPs, -792G>A was more prevalent in the infertile men (P= 0.0005). Quantitative analysis revealed that genotypes of -792G>A had effects on sperm concentration (P= 0.0025) and motility (P= 1.5 × 10(-7)). The G to A substitution was associated with decreased binding of the nuclear respiratory factor-1 (NRF-1) to the promoter region and decreased reporter gene activity. CONCLUSION We have identified the core promoter of the human DAZL gene. We also provide preliminary evidence for the role of a novel SNP of the DAZL gene promoter in human spermatogenic failure.
Collapse
Affiliation(s)
- Yeng-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Gurkan H, Aydin F, Kadıoglu A, Palanduz S. Investigation of mutations in the synaptonemal complex protein 3 (SYCP3) gene among azoospermic infertile male patients in the Turkish population. Andrologia 2012; 45:92-100. [PMID: 22670862 DOI: 10.1111/j.1439-0272.2012.01317.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2012] [Indexed: 11/30/2022] Open
Abstract
To investigate possible mutations and/or single nucleotide polymorphisms in the synaptonemal complex protein 3 (SYCP3) gene among nonobstructive azoospermic infertile males in a Turkish population, 75 nonobstructive azoospermic infertile male patients were included in the study. These patients were unrelated to each other and had 46,XY chromosome structure without Y microdeletion. In addition, 75 individuals whose fertility was proven by reproduction were enrolled in the study as controls. Nine exon deep intronic primers belonging to the SYCP3 gene were designed and amplified by PCR, and the nucleotide sequences were identified by DNA sequence analysis. DNA sequence analysis was used to detect mutations and/or single nucleotide polymorphisms in the SYCP3 gene. No mutations were detected in the 9 exons of SYCP3. A total of eleven variations, however, were detected: seven have been identified in the NCBI SNP database, whereas four have not. On the basis of the results, we agree with the idea that SYCP3 mutations are not associated with the genetic susceptibility for meiotic arrest in infertile male patients with nonobstructive azoospermia in the Turkish population and that further studies investigating the other components of the synaptonemal complex protein (SYCP1, SYCP2) should be conducted.
Collapse
Affiliation(s)
- H Gurkan
- Department of Medical Genetics, Medical Faculty, Trakya University, Edirne, Turkey.
| | | | | | | |
Collapse
|
49
|
Grant A, Fathalli F, Rouleau G, Joober R, Flores C. Association between schizophrenia and genetic variation in DCC: a case-control study. Schizophr Res 2012; 137:26-31. [PMID: 22418395 DOI: 10.1016/j.schres.2012.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 12/27/2022]
Abstract
Schizophrenia is a highly heritable neurodevelopmental disorder associated with alterations in synaptic connectivity. Deleted in colorectal cancer (DCC), a receptor for the guidance cue netrin-1, plays a pivotal role in organizing neuronal circuitry by guiding growing axons and dendrites to their correct targets and by influencing synaptic connectivity. Results from experiments we previously conducted in dcc-heterozygous mice show that DCC plays a critical role in the developmental organization of the mesocorticolimbic dopamine (DA) circuitry. Furthermore we have shown that reduced expression of DCC during development and/or throughout life confers resilience to the development of schizophrenia-like DA and behavioural abnormalities. Importantly, this "protective" phenotype only emerges after puberty. Here we assess whether DCC may contribute to the risk of schizophrenia. We examined single nucleotide polymorphisms (SNPs) located in the DCC gene for association with schizophrenia using a case-control sample consisting of 556 unrelated schizophrenic patients and 208 healthy controls. We found one SNP, rs2270954, to be nominally associated with schizophrenia; patients were less likely to be heterozygous at this locus and more likely to be homozygous for the minor allele (χ(2)=9.84, df=2, nominal p=0.0071). Intriguingly, this SNP is located within the 3' untranslated region, an area known to contain a number of regulatory sequences that determine the stability and translation efficacy of mRNA. These results, together with our previous findings from studies in rodents, point at DCC as a promising novel candidate gene that may contribute to the genetic basis behind individual differences in susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Alanna Grant
- Integrated Program in Neuroscience, McGill University, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
50
|
Huijbregts L, Roze C, Bonafe G, Houang M, Le Bouc Y, Carel JC, Leger J, Alberti P, de Roux N. DNA polymorphisms of the KiSS1 3' untranslated region interfere with the folding of a G-rich sequence into G-quadruplex. Mol Cell Endocrinol 2012; 351:239-48. [PMID: 22230814 DOI: 10.1016/j.mce.2011.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023]
Abstract
KISS1R and its ligand, the kisspeptins, are key hypothalamic factors that regulate GnRH hypothalamic secretion and therefore the pubertal timing. During studies analysing KiSS1 as a candidate gene in pubertal onset disorders, two SNP and one nucleotide insertion were observed in a 23 nucleotides G-rich sequence located 65 nucleotides downstream of the stop codon. The polymorphisms formed four haplotypes. Biophysical experiments revealed the ability of this G-rich sequence to fold into G-quadruplex structures and demonstrated that the three DNA polymorphisms did not perturb the folding into G-quadruplex but affected G-quadruplex conformation. A functional luciferase reporter-based assay revealed functional differences between 3'UTR haplotypes. These data show that polymorphisms in a G-rich sequence of the 3'UTR of KISS1, able to fold into G-quadruplex structures, can modulate gene expression. They highlight the potential role of this G-quadruplex in the regulation of KISS1 expression and in the timing of pubertal onset.
Collapse
Affiliation(s)
- Lukas Huijbregts
- INSERM, U676, Hôpital Robert-Debré, 75935 Paris Cedex 19, France; Paris Diderot University, 75018 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|