1
|
García-Cruz C, Aragón J, Lourdel S, Annan A, Roger JE, Montanez C, Vaillend C. Tissue- and cell-specific whole-transcriptome meta-analysis from brain and retina reveals differential expression of dystrophin complexes and new dystrophin spliced isoforms. Hum Mol Genet 2022; 32:659-676. [PMID: 36130212 PMCID: PMC9896479 DOI: 10.1093/hmg/ddac236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023] Open
Abstract
The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.
Collapse
Affiliation(s)
| | | | - Sophie Lourdel
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Ahrmad Annan
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Jérôme E Roger
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cecilia Montanez
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cyrille Vaillend
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| |
Collapse
|
2
|
Niba ETE, Awano H, Lee T, Takeshima Y, Shinohara M, Nishio H, Matsuo M. Dystrophin Dp71 Subisoforms Localize to the Mitochondria of Human Cells. Life (Basel) 2021; 11:life11090978. [PMID: 34575126 PMCID: PMC8468555 DOI: 10.3390/life11090978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by deficiency in dystrophin, a protein product encoded by the DMD gene. Mitochondrial dysfunction is now attracting much attention as a central player in DMD pathology. However, dystrophin has never been explored in human mitochondria. Here, we analyzed dystrophin in cDNAs and mitochondrial fractions of human cells. Mitochondrial fraction was obtained using a magnetic-associated cell sorting (MACS) technology. Dystrophin was analyzed by reverse transcription (RT)-PCR and western blotting using an antibody against the dystrophin C-terminal. In isolated mitochondrial fraction from HEK293 cells, dystrophin was revealed as a band corresponding to Dp71b and Dp71ab subisoforms. Additionally, in mitochondria from HeLa, SH-SY5Y, CCL-136 and HepG2 cells, signals for Dp71b and Dp71ab were revealed as well. Concomitantly, dystrophin mRNAs encoding Dp71b and Dp71ab were disclosed by RT-PCR in these cells. Primary cultured myocytes from three dystrophinopathy patients showed various levels of mitochondrial Dp71 expression. Coherently, levels of mRNA were different in all cells reflecting the protein content, which indicated predominant accumulation of Dp71. Dystrophin was demonstrated to be localized to human mitochondrial fraction, specifically as Dp71 subisoforms. Myocytes derived from dystrophinopathy patients manifested different levels of mitochondrial Dp71, with higher expression revealed in myocytes from Becker muscular dystrophy (BMD) patient-derived myocytes.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
- Correspondence: ; Tel.: +81-78-382-5543
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hisahide Nishio
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan;
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan;
| |
Collapse
|
3
|
Jones L, Naidoo M, Machado LR, Anthony K. The Duchenne muscular dystrophy gene and cancer. Cell Oncol (Dordr) 2021; 44:19-32. [PMID: 33188621 PMCID: PMC7906933 DOI: 10.1007/s13402-020-00572-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mutation of the Duchenne muscular dystrophy (DMD) gene causes Duchenne and Becker muscular dystrophy, degenerative neuromuscular disorders that primarily affect voluntary muscles. However, increasing evidence implicates DMD in the development of all major cancer types. DMD is a large gene with 79 exons that codes for the essential muscle protein dystrophin. Alternative promotor usage drives the production of several additional dystrophin protein products with roles that extend beyond skeletal muscle. The importance and function(s) of these gene products outside of muscle are not well understood. CONCLUSIONS We highlight a clear role for DMD in the pathogenesis of several cancers, including sarcomas, leukaemia's, lymphomas, nervous system tumours, melanomas and various carcinomas. We note that the normal balance of DMD gene products is often disrupted in cancer. The short dystrophin protein Dp71 is, for example, typically maintained in cancer whilst the full-length Dp427 gene product, a likely tumour suppressor, is frequently inactivated in cancer due to a recurrent loss of 5' exons. Therefore, the ratio of short and long gene products may be important in tumorigenesis. In this review, we summarise the tumours in which DMD is implicated and provide a hypothesis for possible mechanisms of tumorigenesis, although the question of cause or effect may remain. We hope to stimulate further study into the potential role of DMD gene products in cancer and the development of novel therapeutics that target DMD.
Collapse
Affiliation(s)
- Leanne Jones
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
| | - Michael Naidoo
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
| | - Lee R Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK
- Department of Genetics and Genome Science, University of Leicester, LE1 7RH, Leicester, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, University Drive, Northampton, NN1 5PH, UK.
| |
Collapse
|
4
|
First Identification of RNA-Binding Proteins That Regulate Alternative Exons in the Dystrophin Gene. Int J Mol Sci 2020; 21:ijms21207803. [PMID: 33096920 PMCID: PMC7589424 DOI: 10.3390/ijms21207803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
The Duchenne muscular dystrophy (DMD) gene has a complex expression pattern regulated by multiple tissue-specific promoters and by alternative splicing (AS) of the resulting transcripts. Here, we used an RNAi-based approach coupled with DMD-targeted RNA-seq to identify RNA-binding proteins (RBPs) that regulate splicing of its skeletal muscle isoform (Dp427m) in a human muscular cell line. A total of 16 RBPs comprising the major regulators of muscle-specific splicing events were tested. We show that distinct combinations of RBPs maintain the correct inclusion in the Dp427m of exons that undergo spatio-temporal AS in other dystrophin isoforms. In particular, our findings revealed the complex networks of RBPs contributing to the splicing of the two short DMD exons 71 and 78, the inclusion of exon 78 in the adult Dp427m isoform being crucial for muscle function. Among the RBPs tested, QKI and DDX5/DDX17 proteins are important determinants of DMD exon inclusion. This is the first large-scale study to determine which RBP proteins act on the physiological splicing of the DMD gene. Our data shed light on molecular mechanisms contributing to the expression of the different dystrophin isoforms, which could be influenced by a change in the function or expression level of the identified RBPs.
Collapse
|
5
|
Intronic Alternative Polyadenylation in the Middle of the DMD Gene Produces Half-Size N-Terminal Dystrophin with a Potential Implication of ECG Abnormalities of DMD Patients. Int J Mol Sci 2020; 21:ijms21103555. [PMID: 32443516 PMCID: PMC7278912 DOI: 10.3390/ijms21103555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
The DMD gene is one of the largest human genes, being composed of 79 exons, and encodes dystrophin Dp427m which is deficient in Duchenne muscular dystrophy (DMD). In some DMD patient, however, small size dystrophin reacting with antibody to N-terminal but not to C-terminal has been identified. The mechanism to produce N-terminal small size dystrophin remains unknown. Intronic polyadenylation is a mechanism that produces a transcript with a new 3′ terminal exon and a C-terminal truncated protein. In this study, intronic alternative polyadenylation was disclosed to occur in the middle of the DMD gene and produce the half-size N-terminal dystrophin Dp427m, Dpm234. The 3′-rapid amplification of cDNA ends revealed 421 bp sequence in the downstream of DMD exon 41 in U-251 glioblastoma cells. The cloned sequence composing of the 5′ end sequence of intron 41 was decided as the terminal exon, since it encoded poly (A) signal followed by poly (A) stretch. Subsequently, a fragment from DMD exon M1 to intron 41 was obtained by PCR amplification. This product was named Dpm234 after its molecular weight. However, Dpm234 was not PCR amplified in human skeletal and cardiac muscles. Remarkably, Dpm234 was PCR amplified in iPS-derived cardiomyocytes. Accordingly, Western blotting of cardiomyocyte proteins showed a band of 234 kDa reacting with dystrophin antibody to N-terminal, but not C-terminal. Clinically, DMD patients with mutations in the Dpm234 coding region were found to have a significantly higher likelihood of two ECG abnormal findings. Intronic alternative splicing was first revealed in Dp427m to produce small size dystrophin.
Collapse
|
6
|
Schwann cell-specific Dp116 is expressed in glioblastoma cells, revealing two novel DMD gene splicing patterns. Biochem Biophys Rep 2019; 20:100703. [PMID: 31737793 PMCID: PMC6849142 DOI: 10.1016/j.bbrep.2019.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Background The DMD gene is one of the largest human genes, being composed of 79 exons. Dystrophin Dp116 expressed from the promoter in intron 55 is a Schwann cell-specific isoform. The pathophysiological roles of Dp116 are largely unknown, because of its limited expression. This study assessed the expression of Dp116 in glioblastoma cells and evaluated the splicing patterns of the DMD gene in these cells. Methods Full-length Dp116 cDNA was PCR amplified from U-251 glioblastoma cells. Dp116 protein was analyzed by Western blotting. Results Full-length Dp116 cDNA, extending from exon S1 to exon 79, was PCR amplified to avoid confusion with other DMD isoforms. The full-length Dp116 transcript was amplified as nearly 3 kb in size. Western blotting of U-251 cell lysates revealed a signal at a position corresponding to vector-expressed Dp116 protein, indicating that Dp116 is expressed in glioblastoma cells. Sequencing of the amplified product revealed five splice variants, all skipping exon 78. The most abundant transcript lacked only exon 78 (Dp116b), whereas the second most abundant transcript lacked both exons 71 and 78 (Dp116ab). A third transcript lacking exons 71–74 and 78 was also identified (Dp116bc). Two novel splicing patterns were also observed, one with a deletion of exons 68 and 69 (Dp116bΔ68-69) and the other with a 100 bp deletion in the 5’ terminal end of exon 75 (75s), which was produced by the activation of a cryptic splice acceptor site (Dp116b75s). However, the splicing patterns in glioblastoma cells of DMD exons in Dp116 and Dp71 showed no significant differences. Conclusions Dp116 is expressed in glioblastoma cells as five splicing variants, with Dp116b being the most abundant. Two novel splicing patterns of DMD exons were observed. Dp116 is a Schwann cell-specific dystrophin isoform. Dp116 was shown to be expressed in glioblastoma, a lethal cerebral malignancy. Skipping of exon 78 was the default pathway. Of the five alternatively spliced variants detected, Dp116b was the most abundant. DMD exons showed two novel splicing patterns, one with cryptic splice activation.
Collapse
|
7
|
Detection of Dystrophin Dp71 in Human Skeletal Muscle Using an Automated Capillary Western Assay System. Int J Mol Sci 2018; 19:ijms19061546. [PMID: 29789502 PMCID: PMC6032138 DOI: 10.3390/ijms19061546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Dystrophin Dp71 is one of the isoforms produced by the DMD gene which is mutated in patients with Duchenne muscular dystrophy (DMD). Although Dp71 is expressed ubiquitously, it has not been detected in normal skeletal muscle. This study was performed to assess the expression of Dp71 in human skeletal muscle. Methods: Human skeletal muscle RNA and tissues were obtained commercially. Mouse skeletal muscle was obtained from normal and DMDmdx mice. Dp71 mRNA and protein were determined by reverse-transcription PCR and an automated capillary Western assay system, the Simple Western, respectively. Dp71 was over-expressed or suppressed using a plasmid expressing Dp71 or antisense oligonucleotide, respectively. Results: Full-length Dp71 cDNA was PCR amplified as a single product from human skeletal muscle RNA. A ca. 70 kDa protein peak detected by the Simple Western was determined as Dp71 by over-expressing Dp71 in HEK293 cells, or suppressing Dp71 expression with antisense oligonucleotide in rhabdomyosarcoma cells. The Simple Western assay detected Dp71 in the skeletal muscles of both normal and DMD mice. In human skeletal muscle, Dp71 was also detected. The ratio of Dp71 to vinculin of human skeletal muscle samples varied widely, indicating various levels of Dp71 expression. Conclusions: Dp71 protein was detected in human skeletal muscle using a highly sensitive capillary Western blotting system.
Collapse
|
8
|
Li H, Lv B, Kong L, Xia J, Zhu M, Hu L, Zhen D, Wu Y, Jia X, Zhu S, Cui H. Nova1 mediates resistance of rat pheochromocytoma cells to hypoxia-induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. Int J Mol Med 2017; 40:1125-1133. [PMID: 28791345 PMCID: PMC5593465 DOI: 10.3892/ijmm.2017.3089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Neuro-oncological ventral antigen 1 (Nova1) is a well known brain-specific splicing factor. Several studies have identified Nova1 as a regulatory protein at the top of a hierarchical network. However, the function of Nova1 during hypoxia remains poorly understood. This study aimed to investigate the protective effect of Nova1 against cell hypoxia and to further explore the Bax/Bcl-2/caspase-3 pathway as a potential mechanism. During hypoxia, the survival rate of pheochromocytoma PC12 cells was gradually decreased and the apoptosis rate was gradually increased, peaking at 48 h of hypoxia. At 48 h after transfection of PC12 cells with pCMV-Myc-Nova1, the expression of Nova1 was significantly increased, with wide distribution in the cytoplasm and nucleus. Moreover, the survival rate was significantly increased and the apoptosis rate was significantly decreased. Additionally, the mRNA and protein expression levels of Bax and caspase-3 were significantly increased in the pCMV-Myc group and significantly decreased in the pCMV-Myc-Nova1 group, whereas that of Bcl-2 was significantly decreased in the pCMV-Myc group and significantly increased in the pCMV-Myc-Nova1 group. This study indicated that Nova1 could be linked to resistance to the hypoxia-induced apoptosis of PC12 cells via the Bax/Bcl-2/caspase-3 pathway, and this finding may be of significance for exploring novel mechanisms of hypoxia and the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Hualing Li
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bei Lv
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ling Kong
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ming Zhu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lijuan Hu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Danyang Zhen
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yifan Wu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoqin Jia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Sujuan Zhu
- Department of Biochemistry, Biosciences and Biotechnology College of Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
9
|
Normal and altered pre-mRNA processing in the DMD gene. Hum Genet 2017; 136:1155-1172. [DOI: 10.1007/s00439-017-1820-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
|
10
|
Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, Matsuo M. DMD transcripts in CRL-2061 rhabdomyosarcoma cells show high levels of intron retention by intron-specific PCR amplification. Cancer Cell Int 2017; 17:58. [PMID: 28546788 PMCID: PMC5442858 DOI: 10.1186/s12935-017-0428-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The DMD gene encoding dystrophin is mutated in Duchenne muscular dystrophy, a fatal progressive muscle wasting disease. DMD has also been shown to act as a tumor suppressor gene. Rhabdomyosarcoma (RMS) is a mesodermal sarcoma that shares characteristics of skeletal muscle precursors. Products of the DMD gene in RMS have not yet been fully clarified. Here, DMD products were analyzed in CRL-2061 cells established from alveolar RMS. METHODS The 14-kb long DMD cDNA was PCR amplified as 20 separated fragments, as were nine short intron regions. Dystrophin was analyzed by Western blotting using an antibody against the C-terminal region of dystrophin. RESULTS Sixteen of the 20 DMD cDNA fragments could be amplified from CRL-2061 cells as muscle cDNA. Three fragments included aberrant gene products, including one in which exon 71 was omitted and one each with retention of introns 40 and 58. In one fragment, extending from exon 70 to 79, no normally spliced product was obtained. Rather, six alternatively spliced products were identified, including a new product deleting exon 73, with the most abundant product showing deletion of exon 78. Although dystrophin expression was expected in CRL-2061 cells, western blotting of cell lysates showed no evidence of dystrophin, suggesting that translation of full-length DMD mRNA was inhibited by intron retention that generated a premature stop codon. Intron specific PCR amplification of nine short introns, showed retention of introns 40, 58, and 70, which constituted about 60, 25 and 9%, respectively, of the total PCR amplified products. The most abundant DMD transcript contained two abnormalities, intron 40 retention and exon 78 skipping. CONCLUSIONS Intron-specific PCR amplification showed that DMD transcripts contained high levels of introns 40, 58 and 70. Retention of these introns may have been responsible for the lack of dystrophin expression by CRL-2061 cells, thereby abolishing the tumor suppressor activity of dystrophin.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| | - Ryo Yamanaka
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| | - Abdul Qawee Mahyoob Rani
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan.,Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Sciences, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| |
Collapse
|
11
|
Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS. J Hum Genet 2017; 62:531-537. [PMID: 28100912 DOI: 10.1038/jhg.2016.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) discloses nucleotide changes in the genome. Mutations at splicing regulatory elements are expected to cause splicing errors, such as exon skipping, cryptic splice site activation, partial exon loss or intron retention. In dystrophinopathy patients, prediction of splicing outcomes is essential to determine the phenotype: either severe Duchenne or mild Becker muscular dystrophy, based on the reading frame rule. In a Vietnamese patient, NGS identified a c.9361+1G>A mutation in the dystrophin gene and an additional DNA variation of A>G at +117 bases in intron 64. To ascertain the consequences of these DNA changes on dystrophin splicing, minigene constructs were prepared inserting dystrophin exon 64 plus various lengths of intron 64. Exon 64 skipping was observed in the minigene construct with 160 nucleotide (nt) of intron 64 sequence with both c.9361+1A and +117G. In contrast, minigene constructs with larger flanking intronic domains resulted in cryptic splice site activation rather than exon skipping. Meanwhile, the cryptic splice site activation was induced even in +117G when intron 64 was elongated to 272 nt and longer. It was expected that cryptic splice site activation is an in vivo splicing outcome.
Collapse
|
12
|
Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle. Sci Rep 2017; 7:39094. [PMID: 28045018 PMCID: PMC5206723 DOI: 10.1038/srep39094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023] Open
Abstract
We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) NB transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3′ splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.
Collapse
|
13
|
Nishida A, Yasuno S, Takeuchi A, Awano H, Lee T, Niba ETE, Fujimoto T, Itoh K, Takeshima Y, Nishio H, Matsuo M. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab. Histochem Cell Biol 2016; 146:301-9. [PMID: 27109495 DOI: 10.1007/s00418-016-1439-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 11/30/2022]
Abstract
The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan
| | - Sato Yasuno
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan.,Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Chuo, Kobe, 650-0017, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Mukogawacho, Nishinomiya, 663-8501, Japan
| | - Emma Tabe Eko Niba
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Mukogawacho, Nishinomiya, 663-8501, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Graduate School of Medicine, Kobe University, Chuo, Kobe, 650-0017, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan.
| |
Collapse
|