1
|
Taheri M, Pourtavakoli A, Eslami S, Ghafouri-Fard S, Sayad A. Assessment of expression of calcium signaling related lncRNAs in epilepsy. Sci Rep 2023; 13:17993. [PMID: 37865723 PMCID: PMC10590428 DOI: 10.1038/s41598-023-45341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Calcium signaling is a metabolic pathway that is essential in neurons development and can be involved in the pathobiology of epilepsy. We assessed expression of three mRNA coding gene (SLC1A1, SLC25A12, and ATP2B2) and three related long non-coding RNAs (LINC01231:1, lnc-SLC25A12-8:1 and lnc-MTR-1:1) from this pathway in 39 patients with refractory epilepsy and 71 healthy controls. Expression of all genes except for lnc-SLC25A12 was higher in total epileptic cases compared with controls (P values = 0.0002, < 0.0001, < 0.0001, 0.049 and 0.0005 for SLC1A1, SLC25A12, LINC01231, ATP2B2 and lnc-MTR-1, respectively. When we separately compared expression of genes among males and females, SLC1A1, SLC25A12, LINC01231 and lnc-MTR-1 showed up-regulation in male cases compared with male controls. Moreover, expressions of SLC1A1 and SLC25A12 were higher in female cases compared with female controls. Remarkably, SLC25A12 was found to have the highest sensitivity value (= 1) for differentiation of epileptic cases from controls. Moreover, lnc-MTR-1 and lnc-SLC25A12 were sensitive markers for such purpose (sensitivity values = 0.89 and 0.87, respectively). The highest value belonged to LINC01231 with the value of 0.76. Taken together, this study demonstrates dysregulation of calcium-signaling related genes in epileptic patients and suggests these genes as potential biomarkers for epilepsy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Pourtavakoli
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Daems F, Weckhuysen S. Hot water epilepsy: A case report of a sporadic form of reflex epilepsy. Epileptic Disord 2023; 25:426-428. [PMID: 36951164 DOI: 10.1002/epd2.20029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Frederik Daems
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
- Advanced Master in Specialist Medicine - Neurology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Patterson Rosa L, Mallicote MF, MacKay RJ, Brooks SA. Ion Channel and Ubiquitin Differential Expression during Erythromycin-Induced Anhidrosis in Foals. Animals (Basel) 2021; 11:3379. [PMID: 34944156 PMCID: PMC8697959 DOI: 10.3390/ani11123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Macrolide drugs are the treatment of choice for Rhodococcus equi infections, despite severe side-effects temporary anhidrosis as a. To better understand the molecular biology leading to macrolide induced anhidrosis, we performed skin biopsies and Quantitative Intradermal Terbutaline Sweat Tests (QITSTs) in six healthy pony-cross foals for three different timepoints during erythromycin administration-pre-treatment (baseline), during anhidrosis and post-recovery. RNA sequencing of biopsies followed by differential gene expression analysis compared both pre and post normal sweating timepoints to the erythromycin induced anhidrosis episode. After Bonferroni correction for multiple testing, 132 gene transcripts were significantly differentially expressed during the anhidrotic timepoint. Gene ontology analysis of the full differentially expressed gene set identified over-represented biological functions for ubiquitination and ion-channel function, both biologically relevant to sweat production. These same mechanisms were previously implicated in heritable equine idiopathic anhidrosis and sweat gland function and their involvement in macrolide-induced temporary anhidrosis warrants further investigation.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
- Etalon Diagnostics, Menlo Park, CA 94025, USA
| | - Martha F. Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (M.F.M.); (R.J.M.)
| | - Robert J. MacKay
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (M.F.M.); (R.J.M.)
| | - Samantha A. Brooks
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
4
|
Al-Eitan LN, Al-Dalala IM, Elshammari AK, Khreisat WH, Nimiri AF, Alnaamneh AH, Aljamal HA, Alghamdi MA. Genetic Association of Epilepsy and Anti-Epileptic Drugs Treatment in Jordanian Patients. Pharmgenomics Pers Med 2020; 13:503-510. [PMID: 33116764 PMCID: PMC7584512 DOI: 10.2147/pgpm.s273125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this study was to investigate the possible effects of single-nucleotide polymorphisms (SNPs) within SLC1A1, SLC6A1, FAM131B, GPLD1, F2, GABRG2, GABRA1, and CACNG5 genes on response to anti-epileptic drugs (AEDs) and the genetic predisposition of epilepsy in Jordanian patients. Patients and Methods A total of 299 healthy individuals and 296 pediatric patients from the Jordanian population were recruited. Blood samples are collected, and genotyping was performed using a custom platform array analysis. Results The SLC1A1 rs10815018 and FAM131B rs4236482 polymorphisms found to be associated with epilepsy susceptibility. Moreover, SLC1A1 rs10815018 and GPLD1 rs1126617 polymorphisms were associated with generalized epilepsy (GE), while FAM131B rs4236482 is associated with the focal phenotype. Regarding the therapeutic response, the genetic polymorphisms of FAM131B rs4236482, GABRA1 rs2279020, and CACNG5 rs740805 are conferred poor response (resistance) to AEDs. There was no linkage of GLPD1 haplotypes to epilepsy, its subtypes, and treatment responsiveness. Conclusion Our findings suggested that SLC1A1, FAM131B, and GPLD1 polymorphisms increasing the risk of generating epilepsy, while FAM131B, GABRA1, and CACNG5 variants may play a role in predicting drug response in patients with epilepsy (PWE).
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Islam M Al-Dalala
- Department of Blood Banking, King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Afrah K Elshammari
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Wael H Khreisat
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Aseel F Nimiri
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Adan H Alnaamneh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Peron A, Baratang NV, Canevini MP, Campeau PM, Vignoli A. Hot water epilepsy andSYN1variants. Epilepsia 2018; 59:2162-2163. [DOI: 10.1111/epi.14572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Angela Peron
- Child Neuropsychiatric Unit, Epilepsy Center; San Paolo Hospital; Department of Health Sciences; University of Milan; Milan Italy
- Department of Pediatrics; Division of Medical Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Nissan V. Baratang
- Department of Pediatrics; University of Montreal; Montreal Quebec Canada
| | - Maria Paola Canevini
- Child Neuropsychiatric Unit, Epilepsy Center; San Paolo Hospital; Department of Health Sciences; University of Milan; Milan Italy
| | | | - Aglaia Vignoli
- Child Neuropsychiatric Unit, Epilepsy Center; San Paolo Hospital; Department of Health Sciences; University of Milan; Milan Italy
| |
Collapse
|
6
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
7
|
Karan KR, Satishchandra P, Sinha S, Anand A. A genetic locus for sensory epilepsy precipitated by contact with hot water maps to chromosome 9p24.3-p23. J Genet 2018. [DOI: 10.1007/s12041-018-0947-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Abstract
INTRODUCTION There is growing awareness that reflex epileptic seizures offer unique insight into natural seizure generation in humans. In the last years, focus has mostly been on reflex seizures in generalized epilepsies whereas a comprehensive review of their role in focal epilepsies has been missing. Areas covered: This paper reviews reflex seizures strictly in focal epilepsies, not including focal reflex seizures in system epilepsies that also exist. They were categorized according to their triggers which can be sensory or cognitive, simple or complex. Numerous diverse conditions exist some of which are much better investigated than others. They required separate individual literature search in PubMed. Where recent review papers exist, it refers to these, but several conditions have never been reviewed, and here it refer to and discusses original reports. Miscellaneous case reports were only exceptionally included when they contributed aspects otherwise missing. Expert commentary: Research on focal reflex seizures with advanced methods of imaging and neurophysiology to elucidate mechanisms of focal ictogenesis will probably be rapidly increasing and will soon provide much new insight. Sensory and cognitive inhibition, i.e. the counterpart of reflex ictogenesis, is promising but needs more structured and controlled research to establish robust therapeutic approaches.
Collapse
Affiliation(s)
- Rūta Mameniškienė
- a Department of Neurology, Institute of Clinical Medicine , Center for Neurology, Vilnius University , Vilnius , Lithuania
| | - Peter Wolf
- b Danish Epilepsy Centre , Dianalund , Denmark.,c Serviço de Neurologia, Departamento de Clínica Médica , Hospital Universitário, Universidade Federal de Santa Catarina (UFSC) , Florianópolis , SC , Brazil
| |
Collapse
|