1
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Vitetta G, Desiderio L, Baccolini I, Uliana V, Lanzoni G, Ghi T, Pilu G, Ambrosini E, Caggiati P, Barili V, Trotta AC, Liuti MR, Malpezzi E, Pittalis MC, Percesepe A. Mosaic derivative chromosomes at chorionic villi (CV) sampling are expression of genomic instability and precursors of cryptic disease-causing rearrangements: report of further four cases. Mol Cytogenet 2024; 17:8. [PMID: 38589928 PMCID: PMC11003029 DOI: 10.1186/s13039-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Mosaic chromosomal anomalies arising in the product of conception and the final fetal chromosomal arrangement are expression of complex biological mechanisms. The rescue of unbalanced chromosome with selection of the most viable cell line/s in the embryo and the unfavourable imbalances in placental tissues was documented in our previous paper and in the literature. We report four additional cases with mosaic derivative chromosomes in different feto-placental tissues, further showing the instability of an intermediate gross imbalance as a frequent mechanism of de novo cryptic deletions and duplications. In conclusion we underline how the extensive remodeling of unbalanced chromosomes in placental tissues represents the 'backstage' of de novo structural rearrangements, as the early phases of a long selection process that the genome undergo during embryogenesis.
Collapse
Affiliation(s)
- Giulia Vitetta
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Desiderio
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ilaria Baccolini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Lanzoni
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tullio Ghi
- Obstetrics & Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gianluigi Pilu
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | | | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Elisabetta Malpezzi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Carla Pittalis
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Antonio Percesepe
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Riviello FN, Daponte A, Ponzi E, Ficarella R, Orsini P, Bucci R, Ventura M, Antonacci F, Catacchio CR, Gentile M. A Rare Case of Concurrent 2q34q36 Duplication and 2q37 Deletion in a Neonate with Syndromic Features. Genes (Basel) 2023; 14:2194. [PMID: 38137016 PMCID: PMC10742419 DOI: 10.3390/genes14122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Large-scale genomic structural variations can have significant clinical implications, depending on the specific altered genomic region. Briefly, 2q37 microdeletion syndrome is a prevalent subtelomeric deletion disorder characterized by variable-sized deletions. Affected patients exhibit a wide range of clinical manifestations, including short stature, facial dysmorphism, and features of autism spectrum disorder, among others. Conversely, isolated duplications of proximal chromosome 2q are rare and lack a distinct phenotype. In this report, we provide an extensive molecular analysis of a 15-day-old newborn referred for syndromic features. Our analysis reveals an 8.5 Mb microdeletion at 2q37.1, which extends to the telomere, in conjunction with an 8.6 Mb interstitial microduplication at 2q34q36.1. Our findings underscore the prominence of 2q37 terminal deletions as commonly reported genomic anomalies. We compare our patient's phenotype with previously reported cases in the literature to contribute to a more refined classification of 2q37 microdeletion syndrome and assess the potential impact of 2q34q36.1 microduplication. We also investigate multiple hypotheses to clarify the genetic mechanisms responsible for the observed genomic rearrangement.
Collapse
Affiliation(s)
- Francesco Nicola Riviello
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| | - Alessia Daponte
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (M.V.); (F.A.)
| | - Emanuela Ponzi
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| | - Romina Ficarella
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| | - Paola Orsini
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| | - Roberta Bucci
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| | - Mario Ventura
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (M.V.); (F.A.)
| | - Francesca Antonacci
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (M.V.); (F.A.)
| | - Claudia Rita Catacchio
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (M.V.); (F.A.)
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere—ASL Bari, 70012 Bari, Italy; (F.N.R.); (E.P.); (R.F.); (P.O.); (R.B.)
| |
Collapse
|
4
|
Bonaglia MC, Fichera M, Marelli S, Romaniello R, Zuffardi O. Low-level complex mosaic with multiple cell lines affecting the 18q21.31q21.32 region in a patient with de novo 18q terminal deletion. Eur J Med Genet 2022; 65:104596. [PMID: 36064004 DOI: 10.1016/j.ejmg.2022.104596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
We describe a 5-year-old girl who was diagnosed at birth with 18q de novo homogeneous deletion at G-banding karyotype. Her clinical condition, characterized by hypotonia, psychomotor retardation, short stature, deafness secondary to bilateral atresia of the external auditory canals, was in agreement with the 18q deletion syndrome though presence of coloboma of a single eye only suggested a mosaic condition as an unusual sign. By combining multiple technologies including array-CGH, FISH, and WGS, we found that the terminal deletion 18q21.32q23 (21 Mb) was in segmental mosaicism of the proximal region 18q21.31q21.32 (2.7 Mb), which showed a variable number of copies: one, two, or three, in 7, 41 and 55% of the cells respectively. Breakpoint junction analysis demonstrated the presence of an inv-dup del (18q) with a disomic segment of 4.7 kb between the inverted and non-inverted copies of the duplicated region 18q21.31q21.32. From these results, we propose that all three types of abnormal chr18 (the inv-dup del and the two 18q terminal deletions of different sizes) arisen from breaks in a dicentric mirror chromosome 18q, either in more than one embryo cell or from subsequent breaking-fusion-bridge cycles. The duplication region was with identical polymorphisms as in all non-recurrent inv-dup del rearrangements though, in contrast with most of them, the 18q abnormality was of maternal origin. Taking into account that distal 18q deletions are not rarely associated with inv-dup del(18q) cell lines, and that the non-disjunction of chromosome 18 takes place especially at maternal meiosis II rather than meiosis I, multiple rescue events starting from trisomic zygotes could be considered alternative to the postmitotic ones. From the clinical point of view, our case, as well as those of del(18q) in mosaic with the dic(18q), shows that the final phenotype is the sum of the different cell lines that acted on embryonic development with signs typical of both the 18q deletion syndrome and trisomy 18. Asymmetrical malformations, such as coloboma of the iris only in the right eye, confirm the underlying mosaicism regardless of whether it is still detectable in the blood.
Collapse
Affiliation(s)
- Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Susan Marelli
- Medical Genetics Service, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Zuffardi O, Fichera M, Bonaglia MC. The embryo battle against adverse genomes: Are de novo terminal deletions the rescue of unfavorable zygotic imbalances? Eur J Med Genet 2022; 65:104532. [PMID: 35724817 DOI: 10.1016/j.ejmg.2022.104532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/02/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
De novo distal deletions are structural variants considered to be already present in the zygote. However, investigations especially in the prenatal setting have documented that they are often in mosaic with cell lines in which the same deleted chromosome shows different types of aberrations such as: 1) neutral copy variants with loss of heterozygosity that replace the deleted region with equivalent portions of the homologous chromosome and create distal uniparental disomy (UPD); 2) derivative chromosomes where the deleted one ends with the distal region of another chromosome or has the shape of a ring; 3) U-type mirror dicentric or inv-dup del rearrangements. Unstable dicentrics had already been entailed as causative of terminal deletions even when no trace of the reciprocal inv-dup del had been detected. To clarify the mechanism of origin of distal deletions, we examined PubMed using as keywords: complex/mosaic chromosomal deletions, distal UPD, U-type dicentrics, inv-dup del chromosomes, excluding the recurrent inv-dup del(8p)s which are known to originate by NAHR at the maternal meiosis. The literature has shown that U-type dicentrics leading to nearly complete trisomy and therefore incompatible with zygotic survival underlie many types of de novo unbalanced rearrangements, including terminal deletions. In the early embryo, the position of the postzygotic breaks of the dicentric, the different ways of acquiring telomeres by the broken portions and the selection of the most favorable cell lines in the different tissues determine the prevalence of one or the other rearrangement. Multiple lines with simple terminal deletions, inv-dup dels, unbalanced translocations and segmental UPDs can coexist in various mosaic combinations although it is rare to identify them all in the blood. Regarding the origin of the dicentric, among the 30 cases of non-recurrent inv-dup del with sufficient genotyping information, paternal origin was markedly prevalent with consistently identical polymorphisms within the duplication region, regardless of parental origin. The non-random parental origin made any postzygotic origin unlikely and suggested the occurrence of these dicentrics mainly in spermatogenesis. This study strengthens the evidence that non-recurrent de novo structural rearrangements are often secondary to the rescue of a zygotic genome incompatible with embryo survival.
Collapse
Affiliation(s)
- Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
6
|
Target enrichment long-read sequencing with adaptive sampling can determine the structure of the small supernumerary marker chromosomes. J Hum Genet 2022; 67:363-368. [PMID: 35027654 DOI: 10.1038/s10038-021-01004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
Structural analysis of small supernumerary marker chromosomes (sSMCs) has revealed that many have complex structures. Structural analysis of sSMCs by whole genome sequencing using short-read sequencers is challenging however because most present with a low level of mosaicism and consist of a small region of the involved chromosome. In this present study, we applied adaptive sampling using nanopore long-read sequencing technology to enrich the target region and thereby attempted to determine the structure of two sSMCs with complex structural rearrangements previously revealed by cytogenetic microarray. In adaptive sampling, simple specification of the target region in the FASTA file enables to identify whether or not the sequencing DNA is included in the target, thus promoting efficient long-read sequencing. To evaluate the target enrichment efficiency, we performed conventional pair-end short-read sequencing in parallel. Sequencing with adaptive sampling achieved a target enrichment at about a 11.0- to 11.5-fold higher coverage rate than conventional pair-end sequencing. This enabled us to quickly identify all breakpoint junctions and determine the exact sSMC structure as a ring chromosome. In addition to the microhomology and microinsertion at the junctions, we identified inverted repeat structure in both sSMCs, suggesting the common generation mechanism involving replication impairment. Adaptive sampling is thus an easy and beneficial method of determining the structures of complex chromosomal rearrangements.
Collapse
|
7
|
Clinical and molecular cytogenetic description of a female patient with de novo 18q inversion duplication/deletion. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Shieh JT, Penon-Portmann M, Wong KHY, Levy-Sakin M, Verghese M, Slavotinek A, Gallagher RC, Mendelsohn BA, Tenney J, Beleford D, Perry H, Chow SK, Sharo AG, Brenner SE, Qi Z, Yu J, Klein OD, Martin D, Kwok PY, Boffelli D. Application of full-genome analysis to diagnose rare monogenic disorders. NPJ Genom Med 2021; 6:77. [PMID: 34556655 PMCID: PMC8460793 DOI: 10.1038/s41525-021-00241-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Current genetic tests for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. .,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | - Monica Penon-Portmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Verghese
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Renata C Gallagher
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tenney
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Daniah Beleford
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Hazel Perry
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew G Sharo
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - David Martin
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
9
|
Gug C, Stoicanescu D, Mozos I, Nussbaum L, Cevei M, Stambouli D, Pavel AG, Doros G. De novo 8p21.3→ p23.3 Duplication With t(4;8)(q35;p21.3) Translocation Associated With Mental Retardation, Autism Spectrum Disorder, and Congenital Heart Defects: Case Report With Literature Review. Front Pediatr 2020; 8:375. [PMID: 32733829 PMCID: PMC7362762 DOI: 10.3389/fped.2020.00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
Duplications of chromosome 8p lead to rare genetic conditions characterized by variable phenotypes. 8p21 and 8p23 duplications were associated with mental retardation but only 8p23 duplication was associated with heart defects. 8p22→ p21.3 duplications were associated with an autism spectrum disorder in several cases. We present a rare case with a de novo duplication of the entire 8p21.3→ p23.3 region, documented by karyotype, FISH, and array CGH, with t(4;8)(q35;p21.3) translocation in a 7 years-old girl. She was referred for genetic counseling at the age of 20 months due to mild dysmorphic facial features, psychomotor retardation, and a noncyanotic heart defect. Another examination carried out at the age of 5 years, enabled the diagnosis of autism spectrum disorder and attention deficit hyperactivity disorder. Upon re-examination after two years she was diagnosed with autism spectrum disorder, attention deficit hyperactivity disorder, liminal intellect with cognitive disharmony, delay in psychomotor acquisitions, developmental language delay, an instrumental disorder, and motor coordination disorder. Cytogenetic analysis using GTG technique revealed the following karyotype: 46,XX,der(4),t(4;8)(q35;p21.3). The translocation of the duplicated 8pter region to the telomeric region 4q was confirmed by FISH analysis (DJ580L5 probe). Array CGH showed: arr[GRCh37]8p23.3p21.3(125733_22400607) × 3. It identified a terminal duplication, a 22.3 Mb copy number gain of chromosome 8p23.3-p21.3, between 125,733 and 22,400,607. In this case, there is a de novo duplication of a large chromosomal segment, which was translocated to chromosome 4q. Our report provides additional data regarding neuropsychiatric features in chromosome 8p duplication. The phenotypic consequences in our patient allow clinical-cytogenetic correlations and may also reveal candidate genes for the phenotypic features.
Collapse
Affiliation(s)
- Cristina Gug
- Department of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dorina Stoicanescu
- Department of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Laura Nussbaum
- Department of Neurosciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Mariana Cevei
- Department of Psychoneuro Sciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Danae Stambouli
- Department of Molecular Genetics and Cytogenetics, Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Anca Gabriela Pavel
- Department of Molecular Genetics and Cytogenetics, Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Gabriela Doros
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
10
|
Bonaglia MC, Bertuzzo S, Ciaschini AM, Discepoli G, Castiglia L, Romaniello R, Zuffardi O, Fichera M. Targeted next-generation sequencing identifies the disruption of the SHANK3 and RYR2 genes in a patient carrying a de novo t(1;22)(q43;q13.3) associated with signs of Phelan-McDermid syndrome. Mol Cytogenet 2020; 13:22. [PMID: 32536973 PMCID: PMC7291734 DOI: 10.1186/s13039-020-00490-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background It has been known for more than 30 years that balanced translocations, especially if de novo, can associate with congenital malformations and / or neurodevelopmental disorders, following the disruption of a disease gene or its cis-regulatory elements at one or both breakpoints. Case presentation We describe a 10-year-old girl with a non-specific neurodevelopmental disorder characterized by moderate intellectual disability (ID), gross motor clumsiness, social and communication deficits. She carries a de novo reciprocal translocation between chromosomes 1q43 and 22q13.3, the latter suggesting the involvement of SHANK3. Indeed, its haploinsufficiency associates with Phelan-McDermid Syndrome, whose main symptoms are characterized by global developmental delay and absent or severely delayed expressive speech. A deep molecular approach, including next-generation sequencing of SHANK3 locus, allowed demonstrating the breakage of RYR2 and SHANK3 on the derivative chromosomes 1 and 22 respectively, and the formation of two fusion genes SHANK3-RYR2 and RYR2-SHANK3 with concomitant cryptic deletion of 3.6 and 4.1 kilobases at translocation junction of both derivatives chromosomes 22 and 1, respectively. Conclusions Although the interruption of SHANK3 accounts for the patient’s psychomotor retardation and autism-like behavior, we do not exclude that the interruption of RYR2 may also have a role on her disorder, or result in further pathogenicity in the future. Indeed, RYR2 that has a well-established role in the etiology of two autosomal dominant adulthood cardiac disorders (#600996 and #604772) is also expressed in the brain (cerebellum, hippocampus, and cerebral cortex) and about half of RYR2 mutation carriers present late onset primary generalized epilepsy without cardiac arrhythmogenic disorders. Moreover, RYR2 variants have also been sporadically reported in individuals with early onset schizophrenia or ID, and its constraint values suggest intolerance to loss-of-function. This study not only confirms the usefulness of the molecular mapping of de novo balanced rearrangements in symptomatic individuals, but also underscores the need for long-term clinical evaluation of the patients, for better evaluating the pathogenicity of the chromosomal breakpoints.
Collapse
Affiliation(s)
- Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Anna Maria Ciaschini
- Lab. di Genetica Medica SOS Malattie Rare, AOU Ospedali Riuniti Umberto I-G.M.Lancisi-G.Salesi, Ancona, Italy
| | - Giancarlo Discepoli
- Lab. di Genetica Medica SOS Malattie Rare, AOU Ospedali Riuniti Umberto I-G.M.Lancisi-G.Salesi, Ancona, Italy
| | | | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Fichera
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Matsubara K, Yanagida K, Nagai T, Kagami M, Fukami M. De Novo Small Supernumerary Marker Chromosomes Arising From Partial Trisomy Rescue. Front Genet 2020; 11:132. [PMID: 32174976 PMCID: PMC7056893 DOI: 10.3389/fgene.2020.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
Small supernumerary marker chromosomes (SMCs) are rare cytogenetic abnormalities. De novo small SMCs, particularly those combined with uniparental disomy (UPD), are assumed to result from incomplete trisomy rescue. Recently, a one-off cellular event designated as chromothripsis was reported as a mechanism for trisomy rescue in micronuclei. This Perspective article aims to highlight a possible association among trisomy rescue, chromothripsis, and SMCs. We propose that chromothripsis-mediated incomplete trisomy rescue in micronuclei underlies various chromosomal rearrangements including SMCs, although other mechanisms such as U-type exchange may also yield SMCs. These assumptions are primarily based on observations of previously reported patients with complex rearrangements and our patient with a small SMC. Given the high frequency of trisomic cells in human preimplantation embryos, chromothripsis-mediated trisomy rescue may be a physiologically important phenomenon. Nevertheless, trisomy rescue has a potential to produce UPD, SMCs, and other chromosomal rearrangements. The concepts of trisomy rescue, chromothripsis, and micronuclei provide novel insights into the mechanism for the maintenance and modification of human chromosomes.
Collapse
Affiliation(s)
- Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Fucic A, Druzhinin V, Aghajanyan A, Slijepcevic P, Bakanova M, Baranova E, Minina V, Golovina T, Kourdakov K, Timofeeva A, Titov V. Rogue versus chromothriptic cell as biomarker of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108299. [PMID: 32430100 DOI: 10.1016/j.mrrev.2020.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
New molecular cytogenetic biomarkers may significantly contribute to biodosimetry, whose application is still globally diverse and not fully standardized. In 2011, a new term, chromothripsis, was introduced raising great interest among researchers and soon motivating further investigations of the phenomenon. Chromothripsis is described as a single event in which one or more chromosomes go through severe DNA damage very much resembling rogue cells (RC) described more than 50 years ago. In this review, we for the first time compare these two multi-aberrant cells types, RC versus chromothriptic cells, giving insight into the similarities of the mechanisms involved in their etiology. In order to make a better comparison, data on RC in 3366 subjects from studies on cancer patients, Chernobyl liquidators, child victims of the Chernobyl nuclear plant accident, residentially and occupationally exposed population have been summarized for the first time. Results of experimental and epidemiological analysis show that chromothriptic cells and RC may be caused by exposure to high LET ionizing radiation. Experience and knowledge collected on RC may be used in future for further investigations of chromothripsis, introducing a new class of cells which include both chromothriptic and RC, and better insight into the frequency of chromothriptic cell per subject, which is currently absent. Both cell types are relevant in investigations of cancer etiology, biomonitoring of accidentally exposed population to ionizing radiation and biomonitoring of astronauts due to their exposure to high LET ionizing radiation during interplanetary voyages.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Anna Aghajanyan
- Medical Institute Peoples' Friendship University of Russia (RUDN University), Moscow, Russia Federation
| | - Predrag Slijepcevic
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Uxbridge, UK
| | | | | | | | | | | | | | - Victor Titov
- Kemerovo Regional Oncology Center, Kemerovo, Russian Federation
| |
Collapse
|
13
|
Xefteris A, Sekerli E, Arampatzi A, Charisiou S, Oikonomidou E, Efstathiou G, Peroulis N, Malamidou A, Tsoulou-Panidou E, Agakidou E, Sarafidis K, Psarakis A, Kataras T, Daskalakis G. Expanded Prader-Willi Syndrome due to an Unbalanced de novo Translocation t(14;15): Report and Review of the Literature. Cytogenet Genome Res 2019; 159:109-118. [PMID: 31816617 DOI: 10.1159/000504159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 11/19/2022] Open
Abstract
In the present study, we report a case of a female infant with a de novo unbalanced t(14;15) translocation resulting in a 14-Mb deletion of the 15q11.1q14 region. The deletion includes the 15q11.2q13 Prader-Willi syndrome (PWS) critical region, while no known deleted genes are found in the 14qter region. According to literature review, patients with similar or larger deletions in the 15q region exhibit an expanded phenotype of PWS with case-specific atypical features such as severe retardation, absence of speech, microcephaly, retrognathia, bifid uvula, ear malformations, and heart defects in addition to typical features of PWS. Our proband exhibited increased deep tendon reflexes, an atypical feature which is not reported in the reviewed literature. The severity of the phenotype is not directly associated with the size of the deletion; however, using a combination of methods, the identification of breakpoints and the deleted genes can be helpful for the prognostication in patients with atypical PWS deletions.
Collapse
|
14
|
Gökpınar İli E, Altıner Ş, Karabulut HG. Cytogenetic, Molecular, and Phenotypic Characterization of a Patient with de novo Derivative Chromosome 18 and Review of the Literature. Cytogenet Genome Res 2019; 159:74-80. [PMID: 31658462 DOI: 10.1159/000503574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 11/19/2022] Open
Abstract
We present a patient with a de novo derivative chromosome 18 which includes a terminal deletion of 18p and a terminal duplication of 18q accompanied by a cryptic duplication of 18p. The girl had mild dysmorphic features such as micro-retrognathia, upslanted palpebral fissures, bilateral epicanthus, high palate, low-set ears, short neck, and full cheeks. She also had an H-type tracheoesophageal fistula which required surgery. Her cognitive and motor skills were delayed. Karyotype analysis showed an additional segment on the short arm of chromosome 18. Chromosomal microarray revealed a 7.3-Mb terminal loss from 18p11.32 to 18p11.23, a 22.2-Mb terminal gain from 18q21.31 to 18q23, and a 3.9-Mb interstitial gain from 18p11.22 to 18p11.21. We hypothesize that the mother has gonadal mosaicism for normal chromosome 18, der(18)dup(p11.22p11.21), and der(18)dup(p11. 22p11.21)inv(18)(p11.22q21.31), or both the terminal del/dup and the interstitial duplication occurred simultaneously.
Collapse
|
15
|
Uehara E, Hattori A, Shima H, Ishiguro A, Abe Y, Ogata T, Ogawa E, Fukami M. Unbalanced Y;7 Translocation between Two Low-Similarity Sequences Leading to SRY-Positive 45,X Testicular Disorders of Sex Development. Cytogenet Genome Res 2019; 158:115-120. [PMID: 31266029 DOI: 10.1159/000501378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 11/19/2022] Open
Abstract
Unbalanced translocations of Y-chromosomal fragments harboring the sex-determining region Y gene (SRY) to the X chromosome or an autosome result in 46,XX and 45,X testicular disorders of sex development (DSD), respectively. Of these, Y;autosome translocation is an extremely rare condition. Here, we identified a 20-year-old man with a 45,X,t(Y;7)(q11.21;q35) karyotype, who exhibited unilateral cryptorchidism, small testis, intellectual disability, and various congenital anomalies. The fusion junction of the translocation was blunt, and the breakpoint-flanking regions shared only 50% similarity. These results indicate that Y;autosome translocations can occur between 2 low-similarity sequences, probably via nonhomologous end joining. Furthermore, translocations of a Ypterq11.21 fragment to 7q35 likely result in normal or only mildly impaired male-type sexual development, along with various clinical features of 7q deletion syndrome, although their effects on adult testicular function remain to be studied.
Collapse
|
16
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
17
|
Kurtas NE, Xumerle L, Leonardelli L, Delledonne M, Brusco A, Chrzanowska K, Schinzel A, Larizza D, Guerneri S, Natacci F, Bonaglia MC, Reho P, Manolakos E, Mattina T, Soli F, Provenzano A, Al-Rikabi AH, Errichiello E, Nazaryan-Petersen L, Giglio S, Tommerup N, Liehr T, Zuffardi O. Small supernumerary marker chromosomes: A legacy of trisomy rescue? Hum Mutat 2018; 40:193-200. [PMID: 30412329 DOI: 10.1002/humu.23683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/11/2022]
Abstract
We studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected. In other cases, the homologs were biparental while the sSMC had the same haplotype of the maternally inherited chromosome. These findings strongly suggest that most sSMCs are the result of a multiple-step mechanism, initiated by maternal meiotic nondisjunction followed by postzygotic anaphase lagging of the supernumerary chromosome and its subsequent chromothripsis.
Collapse
Affiliation(s)
| | - Luciano Xumerle
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Daniela Larizza
- Pediatrics and Adolescentology Unit, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Paolo Reho
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | | | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fiorenza Soli
- Department of Genetics, Santa Chiara Hospital, Trento, Italy
| | - Aldesia Provenzano
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy.,Azienda Ospedaliero-Universitaria Meyer, Firenze, Italy
| | - Ahmed H Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | | | - Sabrina Giglio
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy.,Azienda Ospedaliero-Universitaria Meyer, Firenze, Italy
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|