1
|
Li X, Huang S, Wang G, Kang D, Han M, Wu X, Yang J, Zheng Q, Zhao C, Yuan Y, Dai P. Quantitative assessment of low-level parental mosaicism of SNVs and CNVs in Waardenburg syndrome. Hum Genet 2023; 142:419-430. [PMID: 36576601 DOI: 10.1007/s00439-022-02517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Waardenburg syndrome (WS) is a rare inherited autosomal dominant disorder caused by SOX10, PAX3, MITF, EDNRB, EDN3, and SNAI2. A large burden of pathogenic de novo variants is present in patients with WS, which may be derived from parental mosaicism. Previously, we retrospectively analyzed 90 WS probands with family information. And the frequency of de novo events and parental mosaicism was preliminary investigated in our previous study. In this study, we further explored the occurrence of low-level parental mosaicism in 33 WS families with de novo variants and introduced our procedure of quantifying low-level mosaicism. Mosaic single nucleotide polymorphisms (SNPs) were validated by amplicon-based next-generation sequencing (NGS); copy-number variants (CNVs) were validated by droplet-digital polymerase chain reaction (ddPCR). Molecular validation of low-level mosaicism of WS-causing variants was performed in four families (12.1%, 4/33). These four mosaic variants, comprising three SNVs and one CNV, were identified in SOX10. The rate of parental mosaicism was 25% (4/16) in WS families with de novo SOX10 variants. The lowest allele ratio of a mosaic variant was 2.0% in parental saliva. These de novo WS cases were explained by parental mosaicism conferring an elevated recurrence risk in subsequent pregnancies of parents. Considering its importance in genetic counseling, low-level parental mosaicism should be systematically investigated by personalized sensitive testing. Amplicon-based NGS and ddPCR are recommended to detect and precisely quantify the mosaicism for SNPs and CNVs.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China.,Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory for Pediatric Diseases of Otolaryngology-Head and Neck Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Guojian Wang
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Dongyang Kang
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Xiedong Wu
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Jinyuan Yang
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Qiuchen Zheng
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Chaoyue Zhao
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China.
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, The Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, #28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2
|
Chen JL, Miller DT, Schmidt LS, Malkin D, Korf BR, Eng C, Kwiatkowski DJ, Giannikou K. Mosaicism in Tumor Suppressor Gene Syndromes: Prevalence, Diagnostic Strategies, and Transmission Risk. Annu Rev Genomics Hum Genet 2022; 23:331-361. [PMID: 36044908 DOI: 10.1146/annurev-genom-120121-105450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Collapse
Affiliation(s)
- Jillian L Chen
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Boston University School of Medicine, Boston, Massachusetts, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
3
|
Kehrer-Sawatzki H, Wahlländer U, Cooper DN, Mautner VF. Atypical NF1 Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large NF1 Deletions. Genes (Basel) 2021; 12:genes12101639. [PMID: 34681033 PMCID: PMC8535936 DOI: 10.3390/genes12101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-65421
| | - Ute Wahlländer
- Kliniken des Bezirks Oberbayern (KBO), Children Clinical Center Munich, 81377 Munich, Germany;
| | - David N. Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
4
|
Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet 2021; 140:1635-1649. [PMID: 34535841 PMCID: PMC8553723 DOI: 10.1007/s00439-021-02363-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023]
Abstract
An estimated 5–11% of patients with neurofibromatosis type-1 (NF1) harbour large deletions encompassing the NF1 gene and flanking regions. These NF1 microdeletions are subclassified into type 1, 2, 3 and atypical deletions which are distinguishable from each other by their extent and by the number of genes included within the deletion regions as well as the frequency of mosaicism with normal cells. Most common are type-1 NF1 deletions which encompass 1.4-Mb and 14 protein-coding genes. Type-1 deletions are frequently associated with overgrowth, global developmental delay, cognitive disability and dysmorphic facial features which are uncommon in patients with intragenic pathogenic NF1 gene variants. Further, patients with type-1 NF1 deletions frequently exhibit high numbers of neurofibromas and have an increased risk of malignant peripheral nerve sheath tumours. Genes located within the type-1 NF1 microdeletion interval and co-deleted with NF1 are likely to act as modifiers responsible for the severe disease phenotype in patients with NF1 microdeletions, thereby causing the NF1 microdeletion syndrome. Genotype/phenotype correlations in patients with NF1 microdeletions of different lengths are important to identify such modifier genes. However, these correlations are critically dependent upon the accurate characterization of the deletions in terms of their extent. In this review, we outline the utility as well as the shortcomings of multiplex ligation-dependent probe amplification (MLPA) to classify the different types of NF1 microdeletion and indicate the importance of high-resolution microarray analysis for correct classification, a necessary precondition to identify those genes responsible for the NF1 microdeletion syndrome.
Collapse
Affiliation(s)
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
5
|
Büki G, Zsigmond A, Czakó M, Szalai R, Antal G, Farkas V, Fekete G, Nagy D, Széll M, Tihanyi M, Melegh B, Hadzsiev K, Bene J. Genotype-Phenotype Associations in Patients With Type-1, Type-2, and Atypical NF1 Microdeletions. Front Genet 2021; 12:673025. [PMID: 34168676 PMCID: PMC8217751 DOI: 10.3389/fgene.2021.673025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Neurofibromatosis type 1 is a tumor predisposition syndrome inherited in autosomal dominant manner. Besides the intragenic loss-of-function mutations in NF1 gene, large deletions encompassing the NF1 gene and its flanking regions are responsible for the development of the variable clinical phenotype. These large deletions titled as NF1 microdeletions lead to a more severe clinical phenotype than those observed in patients with intragenic NF1 mutations. Around 5-10% of the cases harbor large deletion and four major types of NF1 microdeletions (type 1, 2, 3 and atypical) have been identified so far. They are distinguishable in term of their size and the location of the breakpoints, by the frequency of somatic mosaicism with normal cells not harboring the deletion and by the number of the affected genes within the deleted region. In our study genotype-phenotype analyses have been performed in 17 mostly pediatric patients with NF1 microdeletion syndrome identified by multiplex ligation-dependent probe amplification after systematic sequencing of the NF1 gene. Confirmation and classification of the NF1 large deletions were performed using array comparative genomic hybridization, where it was feasible. In our patient cohort 70% of the patients possess type-1 deletion, one patient harbors type-2 deletion and 23% of our cases have atypical NF1 deletion. All the atypical deletions identified in this study proved to be novel. One patient with atypical deletion displayed mosaicism. In our study NF1 microdeletion patients presented dysmorphic facial features, macrocephaly, large hands and feet, delayed cognitive development and/or learning difficulties, speech difficulties, overgrowth more often than patients with intragenic NF1 mutations. Moreover, neurobehavior problems, macrocephaly and overgrowth were less frequent in atypical cases compared to type-1 deletion. Proper diagnosis is challenging in certain patients since several clinical manifestations show age-dependency. Large tumor load exhibited more frequently in this type of disorder, therefore better understanding of genotype-phenotype correlations and progress of the disease is essential for individuals suffering from neurofibromatosis to improve the quality of their life. Our study presented additional clinical data related to NF1 microdeletion patients especially for pediatric cases and it contributes to the better understanding of this type of disorder.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anna Zsigmond
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márta Czakó
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Renáta Szalai
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gréta Antal
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Farkas
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Marianna Tihanyi
- Genetic Laboratory, Szent Rafael Hospital of Zala County, Zalaegerszeg, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Full member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No. 739547, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Full member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No. 739547, Pécs, Hungary
| |
Collapse
|
6
|
Liu Q, Grochowski CM, Bi W, Lupski JR, Stankiewicz P. Quantitative Assessment of Parental Somatic Mosaicism for Copy-Number Variant (CNV) Deletions. ACTA ACUST UNITED AC 2021; 106:e99. [PMID: 32176465 DOI: 10.1002/cphg.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As genome sequencing methodologies have become more sensitive in detecting low-frequency rare-variant events, the link between post-zygotic mutagenesis and somatic mosaicism in the etiology of several human genetic conditions other than cancers has become more clear. Given that current clinical-genomics diagnostic methods have limited detection sensitivity for mosaic events, a copy-number variant (CNV) deletion inherited from a parent with low-level (<10%) mosaicism can be erroneously interpreted in the proband to represent a de novo germline event. Here, we describe three sensitive, precise, and cost-efficient methods that can quantitatively assess the potential degree of parental somatic mosaicism levels for CNV deletions: droplet digital PCR (ddPCR), PCR amplicon-based next-generation sequencing (NGS), and quantitative PCR. ddPCR using the EvaGreen fluorescent dye protocol can specifically quantify the deleted or non-deleted alleles by analyzing the number of droplets positive for a fluorescent signal for each event. PCR amplicon-based NGS assesses the allele frequencies of a heterozygous single-nucleotide polymorphism within a deletion region. The difference in number of reads between the two genotypes indicates the level of somatic mosaicism for the CNV deletion. Quantitative PCR can be applied where the relative quantity of the deletion junction-specific product represents the level of mosaicism. Clinical implementation of these quantitative variant-detection methods enables potentially more accurate assessment of disease recurrence risk in family-based genetic counseling, allowing couples to engage in more informed family planning. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Droplet digital PCR (ddPCR) Alternate Protocol 1: PCR amplicon-based next-generation sequencing Alternate Protocol 2: Quantitative real-time PCR (qPCR).
Collapse
Affiliation(s)
- Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Well L, Döbel K, Kluwe L, Bannas P, Farschtschi S, Adam G, Mautner VF, Salamon J. Genotype-phenotype correlation in neurofibromatosis type-1: NF1 whole gene deletions lead to high tumor-burden and increased tumor-growth. PLoS Genet 2021; 17:e1009517. [PMID: 33951044 PMCID: PMC8099117 DOI: 10.1371/journal.pgen.1009517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Neurofibromatosis type-1 (NF1) patients suffer from cutaneous and subcutaneous neurofibromas (CNF) and large plexiform neurofibromas (PNF). Whole gene deletions of the NF1 gene can cause a more severe phenotype compared to smaller intragenic changes. Two distinct groups of NF1 whole gene deletions are type-1 deletions and atypical deletions. Our aim was to assess volumes and averaged annual growth-rates of CNF and PNF in patients with NF1 whole gene deletions and to compare these with NF1 patients without large deletions of the NF1 gene. We retrospectively evaluated 140 whole-body MR examinations of 38 patients with NF1 whole gene deletions (type-1 group: n = 27/atypical group n = 11) and an age- and sex matched collective of 38 NF1-patients. Age-dependent subgroups were created (0-18 vs >18 years). Sixty-four patients received follow-up MRI examinations (NF1whole gene deletion n = 32/control group n = 32). Whole-body tumor-volumes were semi-automatically assessed (MedX, V3.42). Tumor volumes and averaged annual growth-rates were compared. Median tumor-burden was significantly higher in the type-1 group (418ml; IQR 77 - 950ml, p = 0.012) but not in the atypical group (356ml;IQR 140-1190ml, p = 0.099) when compared to the controls (49ml; IQR 11-691ml). Averaged annual growth rates were significantly higher in both the type-1 group (14%/year; IQR 45-36%/year, p = 0.004) and atypical group (11%/year; IQR 5-23%/year, p = 0.014) compared to the controls (4%/year; IQR1-8%/year). Averaged annual growth rates were significantly higher in pediatric patients with type-1 deletions (21%/year) compared with adult patients (8%/year, p = 0.014) and also compared with pediatric patients without large deletions of the NF1 gene (3.3%/year, p = 0.0015). NF1 whole gene deletions cause a more severe phenotype of NF1 with higher tumor burden and higher growth-rates compared to NF1 patients without large deletions of the NF1 gene. In particular, pediatric patients with type-1 deletions display a pronounced tumor growth.
Collapse
Affiliation(s)
- Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Kimberly Döbel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Hu X, He WB, Zhang SP, Luo KL, Gong F, Dai J, Zhang Y, Wan ZX, Li W, Yuan SM, Tan YQ, Lu GX, Lin G, Du J. Next-generation sequence-based preimplantation genetic testing for monogenic disease resulting from maternal mosaicism. Mol Genet Genomic Med 2021; 9:e1662. [PMID: 33942572 PMCID: PMC8172198 DOI: 10.1002/mgg3.1662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosaicism poses challenges for genetic counseling and preimplantation genetic testing for monogenic disorders (PGT-M). NGS-based PGT-M has been extensively used to prevent the transmission of monogenic defects, but it has not been evaluated in the application of PGT-M resulting from mosaicism. METHODS Four women suspected of mosaicism were confirmed by ultra-deep sequencing. Blastocyst trophectoderm cells and polar bodies were collected for whole genome amplification, followed by pathogenic variants detection and haplotype analysis based on NGS. The embryos free of the monogenic disorders were transplantable. RESULTS Ultra-deep sequencing confirmed that the four women harbored somatic mosaic variants, with the proportion of variant cells at 1.12%, 9.0%, 27.60%, and 91.03%, respectively. A total of 25 blastocysts were biopsied and detected during four PGT cycles and 5 polar bodies were involved in one cycle additionally. For each couple, a wild-type embryo was successfully transplanted and confirmed by prenatal diagnosis, resulting in the birth of four healthy infants. CONCLUSIONS Mosaic variants could be effectively evaluated via ultra-deep sequencing, and could be prevented the transmission by PGT. Our work suggested that an NGS-based PGT approach, involving pathogenic variants detection combined with haplotype analysis, is crucial for accurate PGT-M with mosaicism.
Collapse
Affiliation(s)
- Xiao Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wen-Bin He
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shuo-Ping Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ke-Li Luo
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Jing Dai
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yi Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Zhen-Xing Wan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wen Li
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Shi-Min Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Guang-Xiu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Juan Du
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| |
Collapse
|
9
|
Mansouri S, Suppiah S, Mamatjan Y, Paganini I, Liu JC, Karimi S, Patil V, Nassiri F, Singh O, Sundaravadanam Y, Rath P, Sestini R, Gensini F, Agnihotri S, Blakeley J, Ostrow K, Largaespada D, Plotkin SR, Stemmer-Rachamimov A, Ferrer MM, Pugh TJ, Aldape KD, Papi L, Zadeh G. Epigenomic, genomic, and transcriptomic landscape of schwannomatosis. Acta Neuropathol 2021; 141:101-116. [PMID: 33025139 PMCID: PMC7785562 DOI: 10.1007/s00401-020-02230-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.
Collapse
Affiliation(s)
- Sheila Mansouri
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Suganth Suppiah
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Yasin Mamatjan
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Irene Paganini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Jeffrey C Liu
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Shirin Karimi
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Vikas Patil
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Farshad Nassiri
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Olivia Singh
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | | | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Roberta Sestini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Gensini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sameer Agnihotri
- Department of Neurological Surgery, Children's Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Scott R Plotkin
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Marcela Maria Ferrer
- División de Neurocirugía and División Genética, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gelareh Zadeh
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada.
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada.
- Krembil Brain Institute, Toronto, Canada.
| |
Collapse
|
10
|
Kehrer-Sawatzki H, Kluwe L, Salamon J, Well L, Farschtschi S, Rosenbaum T, Mautner VF. Clinical characterization of children and adolescents with NF1 microdeletions. Childs Nerv Syst 2020; 36:2297-2310. [PMID: 32533297 PMCID: PMC7575500 DOI: 10.1007/s00381-020-04717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE An estimated 5-11% of patients with neurofibromatosis type 1 (NF1) harbour NF1 microdeletions encompassing the NF1 gene and its flanking regions. The purpose of this study was to evaluate the clinical phenotype in children and adolescents with NF1 microdeletions. METHODS We retrospectively analysed 30 children and adolescents with NF1 microdeletions pertaining to externally visible neurofibromas. The internal tumour load was determined by volumetry of whole-body magnetic resonance imaging (MRI) in 20 children and adolescents with NF1 microdeletions. Furthermore, the prevalence of global developmental delay, autism spectrum disorder and attention deficit hyperactivity disorder (ADHD) were evaluated. RESULTS Children and adolescents with NF1 microdeletions had significantly more often cutaneous, subcutaneous and externally visible plexiform neurofibromas than age-matched patients with intragenic NF1 mutations. Internal neurofibromas were detected in all 20 children and adolescents with NF1 microdeletions analysed by whole-body MRI. By contrast, only 17 (61%) of 28 age-matched NF1 patients without microdeletions had internal tumours. The total internal tumour load was significantly higher in NF1 microdeletion patients than in NF1 patients without microdeletions. Global developmental delay was observed in 28 (93%) of 30 children with NF1 microdeletions investigated. The mean full-scale intelligence quotient in our patient group was 77.7 which is significantly lower than that of patients with intragenic NF1 mutations. ADHD was diagnosed in 15 (88%) of 17 children and adolescents with NF1 microdeletion. Furthermore, 17 (71%) of the 24 patients investigated had T-scores ≥ 60 up to 75, indicative of mild to moderate autistic symptoms, which are consequently significantly more frequent in patients with NF1 microdeletions than in the general NF1 population. Also, the mean total T-score was significantly higher in patients with NF1 microdeletions than in the general NF1 population. CONCLUSION Our findings indicate that already at a very young age, NF1 microdeletions patients frequently exhibit a severe disease manifestation which requires specialized long-term clinical care.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Lan Kluwe
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Liu Q, Karolak JA, Grochowski CM, Wilson TA, Rosenfeld JA, Bacino CA, Lalani SR, Patel A, Breman A, Smith JL, Cheung SW, Lupski JR, Bi W, Stankiewicz P. Parental somatic mosaicism for CNV deletions - A need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics 2020; 112:2937-2941. [PMID: 32387503 DOI: 10.1016/j.ygeno.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/25/2022]
Abstract
To further assess the scale and level of parental somatic mosaicism, we queried the CMA database at Baylor Genetics. We selected 50 unrelated families where clinically relevant apparent de novo CNV-deletions were found in the affected probands. Parental blood samples screening using deletion junction-specific PCR revealed four parents with somatic mosaicism. Droplet digital PCR (ddPCR), qPCR, and amplicon-based next-generation sequencing (NGS) were applied to validate these findings. Using ddPCR levels of mosaicism ranged from undetectable to 18.5%. Amplicon-based NGS and qPCR for the father with undetectable mosaicism was able to detect mosaicism at 0.39%. In one mother, ddPCR analysis revealed 15.6%, 10.6%, 8.2%, and undetectable levels of mosaicism in her blood, buccal cells, saliva, and urine samples, respectively. Our data suggest that more sensitive and precise methods, e.g. CNV junction-specific LR-PCR, ddPCR, or qPCR may allow for a more refined assessment of the potential disease recurrence risk for an identified variant.
Collapse
Affiliation(s)
- Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | | | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Amy Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Zhu G, Zheng Y, Liu Y, Yan A, Hu Z, Yang Y, Xiang S, Li L, Chen W, Peng Y, Zhong N, Mei H. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: genetic and clinical analysis of 75 patients. Orphanet J Rare Dis 2019; 14:221. [PMID: 31533797 PMCID: PMC6751843 DOI: 10.1186/s13023-019-1196-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Congenital pseudarthrosis of the tibia (CPT) is a rare disease. Some patients present neurofibromatosis type 1 (NF1), while some others do not manifest NF1 (non-NF1). The etiology of CPT, particularly non-NF1 CPT, is not well understood. Here we screened germline variants of 75 CPT cases, including 55 NF1 and 20 non-NF1. Clinical data were classified and analyzed based on NF1 gene variations to investigate the genotype-phenotype relations of the two types of patients. Results Using whole-exome sequencing and Multiplex Ligation-Dependent Probe Amplification, 44 out of 55 NF1 CPT patients (80.0%) were identified as carrying pathogenic variants of the NF1 gene. Twenty-five variants were novel; 53.5% of variants were de novo, and a higher proportion of their carriers presented bone fractures compared to inherited variant carriers. No NF1 pathogenic variants were found in all 20 non-NF1 patients. Clinical features comparing NF1 CPT to non-NF1 CPT did not show significant differences in bowing or fracture onset, lateralization, tissue pathogenical results, abnormality of the proximal tibial epiphysis, and follow-up tibial union after surgery. A considerably higher proportion of non-NF1 patients have cystic lesion (Crawford type III) and used braces after surgery. Conclusions We analyzed a large cohort of non-NF1 and NF1 CPT patients and provided a new perspective for genotype-phenotype features related to germline NF1 variants. Non-NF1 CPT in general had similar clinical features of the tibia as NF1 CPT. Germline NF1 pathogenic variants could differentiate NF1 from non-NF1 CPT but could not explain the CPT heterogeneity of NF1 patients. Our results suggested that non-NF1 CPT was probably not caused by germline NF1 pathogenic variants. In addition to NF1, other genetic variants could also contribute to CPT pathogenesis. Our findings would facilitate the interpretation of NF1 pathogenic variants in CPT genetic counseling. Supplementary information The online version of this article (10.1186/s13023-019-1196-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanghui Zhu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China.,Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yaoxi Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - An Yan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yongjia Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Weijian Chen
- Pathology Department, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Nanbert Zhong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China. .,New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Haibo Mei
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China.
| |
Collapse
|