1
|
Lu L, Bai M, Zheng Y, Wang X, Chen Z, Peng R, Finnell RH, Zhao T, Li C, Wu B, Lei Y, Li J, Wang H. The interaction of endorepellin and neurexin triggers neuroepithelial autophagy and maintains neural tube development. Sci Bull (Beijing) 2024; 69:2260-2272. [PMID: 38702277 DOI: 10.1016/j.scib.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 05/06/2024]
Abstract
Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.
Collapse
Affiliation(s)
- Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Meizhu Bai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufang Zheng
- Obstetrics & Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200090, China
| | - Xiukun Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhongzhong Chen
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Rui Peng
- Obstetrics & Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200090, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77031, USA
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77031, USA.
| | - Jinsong Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China; Children's Hospital, Fudan University, Shanghai 201102, China.
| |
Collapse
|
2
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
3
|
Agata A, Ohtsuka S, Noji R, Gotoh H, Ono K, Nomura T. A Neanderthal/Denisovan GLI3 variant contributes to anatomical variations in mice. Front Cell Dev Biol 2023; 11:1247361. [PMID: 38020913 PMCID: PMC10651735 DOI: 10.3389/fcell.2023.1247361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in genomic structures underlie phenotypic diversification in organisms. Amino acid-changing mutations affect pleiotropic functions of proteins, although little is known about how mutated proteins are adapted in existing developmental programs. Here we investigate the biological effects of a variant of the GLI3 transcription factor (GLI3R1537C) carried in Neanderthals and Denisovans, which are extinct hominins close to modern humans. R1537C does not compromise protein stability or GLI3 activator-dependent transcriptional activities. In contrast, R1537C affects the regulation of downstream target genes associated with developmental processes. Furthermore, genome-edited mice carrying the Neanderthal/Denisovan GLI3 mutation exhibited various alterations in skeletal morphology. Our data suggest that an extinct hominin-type GLI3 contributes to species-specific anatomical variations, which were tolerated by relaxed constraint in developmental programs during human evolution.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratories for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Noji
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
4
|
Kim SE, Robles-Lopez K, Cao X, Liu K, Chothani PJ, Bhavani N, Rahman L, Mukhopadhyay S, Wlodarczyk BJ, Finnell RH. Wnt1 Lineage Specific Deletion of Gpr161 Results in Embryonic Midbrain Malformation and Failure of Craniofacial Skeletal Development. Front Genet 2021; 12:761418. [PMID: 34887903 PMCID: PMC8650154 DOI: 10.3389/fgene.2021.761418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sonic hedgehog (Shh) signaling regulates multiple morphogenetic processes during embryonic neurogenesis and craniofacial skeletal development. Gpr161 is a known negative regulator of Shh signaling. Nullizygous Gpr161 mice are embryonic lethal, presenting with structural defects involving the neural tube and the craniofacies. However, the lineage specific role of Gpr161 in later embryonic development has not been thoroughly investigated. We studied the Wnt1-Cre lineage specific role of Gpr161 during mouse embryonic development. We observed three major gross morphological phenotypes in Gpr161 cKO (Gpr161 f/f; Wnt1-Cre) fetuses; protrusive tectum defect, encephalocele, and craniofacial skeletal defect. The overall midbrain tissues were expanded and cell proliferation in ventricular zones of midbrain was increased in Gpr161 cKO fetuses, suggesting that protrusive tectal defects in Gpr161 cKO are secondary to the increased proliferation of midbrain neural progenitor cells. Shh signaling activity as well as upstream Wnt signaling activity were increased in midbrain tissues of Gpr161 cKO fetuses. RNA sequencing further suggested that genes in the Shh, Wnt, Fgf and Notch signaling pathways were differentially regulated in the midbrain of Gpr161 cKO fetuses. Finally, we determined that cranial neural crest derived craniofacial bone formation was significantly inhibited in Gpr161 cKO fetuses, which partly explains the development of encephalocele. Our results suggest that Gpr161 plays a distinct role in midbrain development and in the formation of the craniofacial skeleton during mouse embryogenesis.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Karla Robles-Lopez
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kristyn Liu
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Pooja J Chothani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Nikitha Bhavani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Lauren Rahman
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Mergnac JP, Wiedemann A, Chery C, Ravel JM, Namour F, Guéant JL, Feillet F, Oussalah A. Diagnostic yield of clinical exome sequencing as a first-tier genetic test for the diagnosis of genetic disorders in pediatric patients: results from a referral center study. Hum Genet 2021; 141:1269-1278. [PMID: 34495415 DOI: 10.1007/s00439-021-02358-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/28/2021] [Indexed: 12/29/2022]
Abstract
The emergence of next-generation sequencing enabled a cost-effective and straightforward diagnostic approach to genetic disorders using clinical exome sequencing (CES) panels. We performed a retrospective observational study to assess the diagnostic yield of CES as a first-tier genetic test in 128 consecutive pediatric patients addressed to a referral center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. CES was performed using the TruSight One (4811 genes) or the TruSight One expanded (6699 genes) panel on an Illumina sequencing platform. The median age was 6.5 years (IQR 2.0-12.0) with 43% of males (55/128), and the median disease duration was 7 months (IQR 1-47). In the whole analysis, the CES diagnostic yield was 55% (70/128). The median test-to-report time was 5 months (IQR 4-7). According to CES indications, the CES diagnostic yields were 81% (21/26) for hyperlipidemia, 75% (6/8) for osteogenesis imperfecta, 64% (25/39) for metabolic disorders, 39% (10/26) for neurological disorders, and 28% (8/29) for the subgroup of patients with miscellaneous conditions. Our results demonstrate the usefulness of a CES-based diagnosis as a first-tier genetic test to establish a molecular diagnosis in pediatric patients with a suspected genetic disorder with a median test-to-report time of 5 months. It highlights the importance of a close interaction between the pediatrician with expertise in genetic disorders and the molecular medicine physician to optimize both CES indication and interpretation. Diagnostic yield of clinical exome sequencing (CES) as a first-tier genetic test for diagnosing genetic disorders in 128 consecutive pediatric patients referred to a reference center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. The CES diagnostic yields are reported in the whole population and patients' subgroups (hyperlipidemia, osteogenesis imperfecta, metabolic diseases, neurological disorders, miscellaneous conditions) (Icons made by Flaticon, flaticon.com; CC-BY-3.0).
Collapse
Affiliation(s)
- Jean-Philippe Mergnac
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Pediatrics, University Hospital of Nancy, 54000, Nancy, France
| | - Arnaud Wiedemann
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Pediatric Intensive Care Unit, University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France
| | - Céline Chery
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Marie Ravel
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France
| | - Farès Namour
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - François Feillet
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Pediatrics, University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France
| | - Abderrahim Oussalah
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France. .,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France. .,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France.
| |
Collapse
|
6
|
[Prenatal ultrasound prognostic of myelomeningocele at the era of fetal surgery]. ACTA ACUST UNITED AC 2021; 49:617-629. [PMID: 34020095 DOI: 10.1016/j.gofs.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/21/2022]
Abstract
Myelomeningocele (MMC) is a severe congenital condition responsible for motor and sensory impairments of the lower limbs, incontinence and cognitive impairment. Its screening, sometimes as early as the first trimester, is one of the major goals of modern prenatal care, supported by the emergence of prenatal surgery that results in a significant improvement in motor function, ambulation and ventriculoperitoneal shunt rate in patients undergoing in-utero surgery. From screening to pre- and post-operative prognostic evaluation, prenatal ultrasound is now an essential tool in the antenatal management of this condition. Using the multi planar and three-dimensional modes, it can be used to assess the vertebral level of MMC, which remains the key antenatal prognostic marker for motor function and ambulation, incontinence and the need for a ventriculo-peritoneal shunt. A careful and systematic ultrasound examination also makes it possible to assess the severity and progression of ventriculomegaly, to search for associated cerebral, spinal cord or vertebral anomalies, or to rule out exclusion criteria for in-utero surgery such as severe kyphosis or serious cortical anomalies. New tools from post-natal evaluation, such as the "metameric" ultrasound assessment of lower limb mobility, appear to be promising either for the initial examination or after in-utero surgery. Ultrasonography, associated with fetal MRI, cytogenetic and next generation sequencing, now allows a highly customized prognostic evaluation of these fetuses affected by MMC and provides the parents with the best possible information on the expected benefits and limitations of fetal surgery.
Collapse
|
7
|
Levy J, Rodriguez-Guéant RM, Oussalah A, Jeannesson E, Wahl D, Ziuly S, Guéant JL. Cardiovascular manifestations of intermediate and major hyperhomocysteinemia due to vitamin B12 and folate deficiency and/or inherited disorders of one-carbon metabolism: a 3.5-year retrospective cross-sectional study of consecutive patients. Am J Clin Nutr 2021; 113:1157-1167. [PMID: 33693455 DOI: 10.1093/ajcn/nqaa432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The association of moderate hyperhomocysteinemia (HHcy) (15-30 μmol/L) with cardiovascular diseases (CVD) has been challenged by the lack of benefit of vitamin supplementation to lowering homocysteine. Consequently, the results of interventional studies have confused the debate regarding the management of patients with intermediate/severe HHcy. OBJECTIVE We sought to evaluate the association of intermediate (30-100 μmol/L) and severe (>100 μmol/L) HHcy related to vitamin deficiencies and/or inherited disorders with CVD outcomes. METHODS We performed a retrospective cross-sectional study on consecutive patients who underwent a homocysteine assay in a French University Regional Hospital Center. Patients with CVD outcomes were assessed for vitamin B12, folate, Hcy, methylmalonic acid, and next-generation clinical exome sequencing. RESULTS We evaluated 165 patients hospitalized for thromboembolic and other cardiovascular (CV) manifestations among 1006 patients consecutively recruited. Among them, 84% (138/165) had Hcy >30 μmol/L, 27% Hcy >50 μmol/L (44/165) and 3% Hcy >100 μmol/L (5/165). HHcy was related to vitamin B12 and/or folate deficiency in 55% (87/165), mutations in one or more genes of one-carbon and/or vitamin B12 metabolisms in 11% (19/165), and severe renal failure in 15% (21/141) of the studied patients. HHcy was the single vascular risk retrieved in almost 9% (15/165) of patients. Sixty % (101/165) of patients received a supplementation to treat HHcy, with a significant decrease in median Hcy from 41 to 17 µmol/L (IQR: 33.6-60.4 compared with 12.1-28). No recurrence of thromboembolic manifestations was observed after supplementation and antithrombotic treatment of patients who had HHcy as a single risk, after ∼4 y of follow-up. CONCLUSION The high frequency of intermediate/severe HHcy differs from the frequent moderate HHcy reported in previous observational studies of patients with pre-existing CVD. Our study points out the importance of diagnosing and treating nutritional deficiencies and inherited disorders to reverse intermediate/severe HHcy associated with CVD outcomes.
Collapse
Affiliation(s)
- Julien Levy
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital (CHRU) of Nancy, Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital (CHRU) of Nancy, Nancy, France
| | - Rosa-Maria Rodriguez-Guéant
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital (CHRU) of Nancy, Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital (CHRU) of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM, Nancy, France
| | - Abderrahim Oussalah
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital (CHRU) of Nancy, Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital (CHRU) of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM, Nancy, France
| | - Elise Jeannesson
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital (CHRU) of Nancy, Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital (CHRU) of Nancy, Nancy, France
| | - Denis Wahl
- INSERM UMR_S 1116 DCAC and CHRU-Nancy, Vascular Medicine Division and Regional Competence Center for Rare Auto-Immune Diseases, University of Lorraine, INSERM, University Hospital (CHRU) of Nancy, Nancy, France
| | - Stéphane Ziuly
- INSERM UMR_S 1116 DCAC and CHRU-Nancy, Vascular Medicine Division and Regional Competence Center for Rare Auto-Immune Diseases, University of Lorraine, INSERM, University Hospital (CHRU) of Nancy, Nancy, France
| | - Jean-Louis Guéant
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital (CHRU) of Nancy, Nancy, France.,Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital (CHRU) of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM, Nancy, France
| |
Collapse
|
8
|
Nonaka M, Ueno K, Isozaki H, Kamei T, Takeda J, Asai A. Familial tendency in patients with lipoma of the filum terminale. Childs Nerv Syst 2021; 37:1641-1647. [PMID: 33415512 DOI: 10.1007/s00381-021-05037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/03/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Lipoma of the filum terminale (FL) is an abnormality in which fat is deposited in the filum terminale. This lipoma is often detected by skin abnormalities in the lumbosacral area such as a sacrococcygeal dimple. Some cases may develop tethered cord and become symptomatic. However, the genetic basis of FL is still unclear. METHODS This study aimed to determine whether there was a family history of FL or other forms of spina bifida among 54 families of 56 patients with FL and to examine whether there is a familial predisposition in FL. In addition, sex, age at diagnosis, presence of symptoms, presence of sacrococcygeal dimple, and the level of conus medullaris between familial and spontaneous cases were evaluated. RESULTS Of the 54 families of FL patients, there were 48 siblings. Among the 48 siblings, 2 had "occult" FL. The frequency of FL among siblings was estimated to be 4.2% (2/48), which was significantly higher than the sum of previously reported cases of spontaneous FL (0.91%; p = 0.017). However, there was no significant difference in sex, age at diagnosis, presence of symptoms, presence of sacrococcygeal dimple, diameter of filum terminale, or level of conus medullaris between familial and spontaneous cases. CONCLUSION To our knowledge, this is the first report on familial FL and examination of the frequency of FL among siblings. The high probability of FL among siblings of FL patients suggests that genetic factors may play a role in FL development.
Collapse
Affiliation(s)
- Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan.
| | - Katsuya Ueno
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Haruna Isozaki
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Takamasa Kamei
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Junichi Takeda
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| |
Collapse
|
9
|
Kowalczyk I, Lee C, Schuster E, Hoeren J, Trivigno V, Riedel L, Görne J, Wallingford JB, Hammes A, Feistel K. Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. Development 2021; 148:dev195008. [PMID: 33500317 PMCID: PMC7860117 DOI: 10.1242/dev.195008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.
Collapse
Affiliation(s)
- Izabela Kowalczyk
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elisabeth Schuster
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Josefine Hoeren
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Valentina Trivigno
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Levin Riedel
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annette Hammes
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Kerstin Feistel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
10
|
Ravel JM, Benkirane M, Calmels N, Marelli C, Ory-Magne F, Ewenczyk C, Halleb Y, Tison F, Lecocq C, Pische G, Casenave P, Chaussenot A, Frismand S, Tyvaert L, Larrieu L, Pointaux M, Drouot N, Bossenmeyer-Pourié C, Oussalah A, Guéant JL, Leheup B, Bonnet C, Anheim M, Tranchant C, Lambert L, Chelly J, Koenig M, Renaud M. Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. J Neurol 2021; 268:1927-1937. [PMID: 33417001 DOI: 10.1007/s00415-020-10348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia. OBJECTIVE We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48. METHODS Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy). RESULTS Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48). CONCLUSION Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Mehdi Benkirane
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nadège Calmels
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cecilia Marelli
- Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, University Montpellier, CHU, Montpellier, France
- MMDN, University Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau et de la Moelle Épinière (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
- Service de génétique clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Yosra Halleb
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, Bordeaux, France
- Centre Mémoire de Ressources et de Recherches, CHU de Bordeaux, Pôle de Neurosciences Cliniques, Bordeaux, France
| | - Claire Lecocq
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | - Guillaume Pische
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | | | - Annabelle Chaussenot
- Service de Génétique Médicale, Centre de Référence des Maladies Mitochondriales, Hôpital de l'Archet 2, Nice, France
| | | | | | - Lise Larrieu
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Morgane Pointaux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Carine Bossenmeyer-Pourié
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Abderrahim Oussalah
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Bruno Leheup
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Céline Bonnet
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Mathieu Anheim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Laëtitia Lambert
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Jamel Chelly
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France.
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France.
| | - Mathilde Renaud
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France.
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France.
- Service de Neurologie, CHRU Nancy, Nancy, France.
| |
Collapse
|
11
|
Closing in on Mechanisms of Open Neural Tube Defects. Trends Neurosci 2020; 43:519-532. [PMID: 32423763 DOI: 10.1016/j.tins.2020.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
Collapse
|