1
|
Wang X, Chen H, Kapoor PM, Su YR, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Michailidou K, Pharoah PD, Hopper JL, Southey MC, Koutros S, Freeman LEB, Stone J, Rennert G, Shibli R, Murphy RA, Aronson K, Guénel P, Truong T, Teras LR, Hodge JM, Canzian F, Kaaks R, Brenner H, Arndt V, Hoppe R, Lo WY, Behrens S, Mannermaa A, Kosma VM, Jung A, Becher H, Giles GG, Haiman CA, Maskarinec G, Scott C, Winham S, Simard J, Goldberg MS, Zheng W, Long J, Troester MA, Love MI, Peng C, Tamimi R, Eliassen H, García-Closas M, Figueroa J, Ahearn T, Yang R, Evans DG, Howell A, Hall P, Czene K, Wolk A, Sandler DP, Taylor JA, Swerdlow AJ, Orr N, Lacey JV, Wang S, Olsson H, Easton DF, Milne RL, Hsu L, Kraft P, Chang-Claude J, Lindström S. A genome-wide gene-based gene-environment interaction study of breast cancer in more than 90,000 women. CANCER RESEARCH COMMUNICATIONS 2022; 2:211-219. [PMID: 36303815 PMCID: PMC9604427 DOI: 10.1158/2767-9764.crc-21-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Background Genome-wide association studies (GWAS) have identified more than 200 susceptibility loci for breast cancer, but these variants explain less than a fifth of the disease risk. Although gene-environment interactions have been proposed to account for some of the remaining heritability, few studies have empirically assessed this. Methods We obtained genotype and risk factor data from 46,060 cases and 47,929 controls of European ancestry from population-based studies within the Breast Cancer Association Consortium (BCAC). We built gene expression prediction models for 4,864 genes with a significant (P<0.01) heritable component using the transcriptome and genotype data from the Genotype-Tissue Expression (GTEx) project. We leveraged predicted gene expression information to investigate the interactions between gene-centric genetic variation and 14 established risk factors in association with breast cancer risk, using a mixed-effects score test. Results After adjusting for number of tests using Bonferroni correction, no interaction remained statistically significant. The strongest interaction observed was between the predicted expression of the C13orf45 gene and age at first full-term pregnancy (PGXE=4.44×10-6). Conclusion In this transcriptome-informed genome-wide gene-environment interaction study of breast cancer, we found no strong support for the role of gene expression in modifying the associations between established risk factors and breast cancer risk. Impact Our study suggests a limited role of gene-environment interactions in breast cancer risk.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hongjie Chen
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Manjeet K. Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Alison M. Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Lush
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Paul D.P. Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | | | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Rana Shibli
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Rachel A. Murphy
- Cancer Control Research, BC Cancer and School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Kristan Aronson
- Public Health Sciences, Queen's University, Kingston, Canada
| | - Pascal Guénel
- Université Paris-Saclay, Inserm, CESP, Team Exposome and Heredity, Villejuif, France
| | - Thérèse Truong
- Université Paris-Saclay, Inserm, CESP, Team Exposome and Heredity, Villejuif, France
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, German
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, German
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Becher
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Stacey Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montréal, Quebec, Canada; Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, Quebec, Canada
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melissa A. Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael I. Love
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cheng Peng
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rulla Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | - Rose Yang
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | - D. Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dale P. Sandler
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United K.ingdom
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - James V. Lacey
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Sophia Wang
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Håkan Olsson
- Departments of Oncology and Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
- Deceased
| | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Sara Lindström
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
4
|
Yu W, Chen K, Ye G, Wang S, Wang P, Li J, Zheng G, Liu W, Lin J, Su Z, Che Y, Ye F, Ma M, Xie Z, Shen H. SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Hum Mol Genet 2020; 30:277-293. [PMID: 33355648 DOI: 10.1093/hmg/ddaa272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Ankylosing spondylitis (AS) is a rheumatic disease with pathological osteogenesis that causes bony ankylosis and even deformity over time. Mesenchymal stem cells (MSCs) are multipotent stem cells that are the main source of osteoblasts. We previously demonstrated that enhanced osteogenic differentiation of MSCs from AS patients (ASMSCs) is related to pathological osteogenesis in AS. However, the more concrete mechanism needs further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development. Single-nucleotide polymorphisms (SNPs) regulate the formation and interaction of SEs and denote genes accounting for AS susceptibility. Via integrative analysis of multiomic data, including histone 3 lysine 27 acetylation (H3K27ac), chromatin immunoprecipitation sequencing (ChIP-seq), SNPs and RNA sequencing (RNA-seq) data, we discovered a transcription network mediated by AS SNP-adjacent SEs (SASEs) in ASMSCs and identified key genes, such as Toll-like receptor 4 (TLR4), interleukin 18 receptor 1 (IL18R1), insulin-like growth factor binding protein 4 (IGFBP4), transportin 1 (TNPO1) and proprotein convertase subtilisin/kexin type 5 (PCSK5), which are pivotal in osteogenesis and AS pathogenesis. The SASE-regulated network modulates the enhanced osteogenic differentiation of ASMSCs by synergistically activating the PI3K-Akt, NF-kappaB and Hippo signaling pathways. Our results emphasize the crucial role of the SASE-regulated network in pathological osteogenesis in AS, and the preferential inhibition of ASMSC osteogenic differentiation by JQ1 indicates that SEs may be attractive targets in future treatment for new bone formation in AS.
Collapse
Affiliation(s)
- Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Keng Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shan Wang
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Feng Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| |
Collapse
|