1
|
Shrestha SK, Lachke SA. Lens Regeneration: The Application of iSyTE and In Silico Approaches to Evaluate Gene Expression in Lens Organoids. Methods Mol Biol 2025; 2848:37-58. [PMID: 39240515 DOI: 10.1007/978-1-0716-4087-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Several protocols have been established for the generation of lens organoids from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and other cells with regenerative potential in humans or various animal models. It is important to examine how well the regenerated lens organoids reflect lens biology, in terms of its development, homeostasis, and aging. Toward this goal, the iSyTE database (integrated Systems Tool for Eye gene discovery; https://research.bioinformatics.udel.edu/iSyTE/ ), a bioinformatics resource tool that contains meta-analyzed gene expression data in wild-type lens across different embryonic, postnatal, and adult stages, can serve as a resource for comparative analysis. This article outlines the approaches toward effective use of iSyTE to gain insights into normal gene expression in the mouse lens, enriched expression in the lens, and differential gene expression in select mouse gene-perturbation cataract/lens defects models, which in turn can be used to evaluate expression of key lens-relevant genes in lens organoids by transcriptomics (e.g., RNA-sequencing (RNA-seq), microarrays, etc.) or other downstream methods (e.g., RT-qPCR, etc.).
Collapse
Affiliation(s)
- Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Qin WJ, Shi JJ, Chen RY, Li CY, Liu YJ, Lu JF, Yang GJ, Cao JF, Chen J. Curriculum vitae of CUG binding protein 1 (CELF1) in homeostasis and diseases: a systematic review. Cell Mol Biol Lett 2024; 29:32. [PMID: 38443798 PMCID: PMC10916161 DOI: 10.1186/s11658-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.
Collapse
Affiliation(s)
- Wan-Jia Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
4
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
5
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
6
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142:927-947. [PMID: 37191732 PMCID: PMC10680127 DOI: 10.1007/s00439-023-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
7
|
Siddam AD, Duot M, Coomson SY, Anand D, Aryal S, Weatherbee BAT, Audic Y, Paillard L, Lachke SA. High-Throughput Transcriptomics of Celf1 Conditional Knockout Lens Identifies Downstream Networks Linked to Cataract Pathology. Cells 2023; 12:1070. [PMID: 37048143 PMCID: PMC10093462 DOI: 10.3390/cells12071070] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Defects in the development of the ocular lens can cause congenital cataracts. To understand the various etiologies of congenital cataracts, it is important to characterize the genes linked to this developmental defect and to define their downstream pathways that are relevant to lens biology and pathology. Deficiency or alteration of several RNA-binding proteins, including the conserved RBP Celf1 (CUGBP Elav-like family member 1), has been described to cause lens defects and early onset cataracts in animal models and/or humans. Celf1 is involved in various aspects of post-transcriptional gene expression control, including regulation of mRNA stability/decay, alternative splicing and translation. Celf1 germline knockout mice and lens conditional knockout (Celf1cKO) mice develop fully penetrant cataracts in early postnatal stages. To define the genome-level changes in RNA transcripts that result from Celf1 deficiency, we performed high-throughput RNA-sequencing of Celf1cKO mouse lenses at postnatal day (P) 0. Celf1cKO lenses exhibit 987 differentially expressed genes (DEGs) at cut-offs of >1.0 log2 counts per million (CPM), ≥±0.58 log2 fold-change and <0.05 false discovery rate (FDR). Of these, 327 RNAs were reduced while 660 were elevated in Celf1cKO lenses. The DEGs were subjected to various downstream analyses including iSyTE lens enriched-expression, presence in Cat-map, and gene ontology (GO) and representation of regulatory pathways. Further, a comparative analysis was done with previously generated microarray datasets on Celf1cKO lenses P0 and P6. Together, these analyses validated and prioritized several key genes mis-expressed in Celf1cKO lenses that are relevant to lens biology, including known cataract-linked genes (e.g., Cryab, Cryba2, Cryba4, Crybb1, Crybb2, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf, Dnase2b, Bfsp1, Gja3, Pxdn, Sparc, Tdrd7, etc.) as well as novel candidates (e.g., Ell2 and Prdm16). Together, these data have defined the alterations in lens transcriptome caused by Celf1 deficiency, in turn uncovering downstream genes and pathways (e.g., structural constituents of eye lenses, lens fiber cell differentiation, etc.) associated with lens development and early-onset cataracts.
Collapse
Affiliation(s)
- Archana D. Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Matthieu Duot
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Sarah Y. Coomson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Yann Audic
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Luc Paillard
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ. Rennes, UMR 6290, Rennes, F-35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. RESEARCH SQUARE 2023:rs.3.rs-2652395. [PMID: 36993571 PMCID: PMC10055508 DOI: 10.21203/rs.3.rs-2652395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3,300 proteins per sample (n=5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ³2.5 average spectral counts, ³2.0 fold-enrichment, False Discovery Rate <0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Hongzhan Huang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| |
Collapse
|
9
|
Xiao J, Jin S, Wang X, Huang J, Zou H. CELF1 Selectively Regulates Alternative Splicing of DNA Repair Genes Associated With Cataract in Human Lens Cell Line. Biochem Genet 2022:10.1007/s10528-022-10324-2. [PMID: 36585568 DOI: 10.1007/s10528-022-10324-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Cataract is a global eye disease caused by the opacification of lens, while its underlying molecular pathogenesis is not clear, making it difficult for prevention. CELF1, an RNA binding protein, mediates Alternative Splicing (AS) of genes involved in diverse diseases and regulates development or defects of lens. Utilizing transcriptome-wide approaches, we analyzed and compared AS patterns between human lens epithelial cells (SRA01/04) with CELF1 overexpression (CELF1-OE) and control cells. Extensive changes in AS patterns upon CELF1-OE were identified in SRA01/04 cells. We finally identified 840 CELF1-regulated AS events (RASEs) and found that CELF1-OE preferred to repress exon skipping events in SRA01/04 cells. CELF1-regulated AS genes were enriched in the regulation of DNA repair, cellular response to DNA damage stimulus, and apoptosis pathways (including HMGA2, CSNK1E, and YAP1). These biological functions and pathways have been reported to be associated with lens development or other eye diseases. To further explore the mechanisms of CELF1 in regulating AS genes, we downloaded and re-analyzed a set of CELF1-RNA interactome data. We found that 194 genes were bound and regulated by CELF1 at the AS level. 10 genes involved in DNA repair-related pathways were also bound by CELF1. Motif analysis for CELF1-bound peaks and splicing sites of RASEs showed that CELF1 regulates AS by binding to the AGGU[AG]AG motif in SRA01/04 cells. CELF1 could mediate AS of DNA repair-related genes through directly binding to their transcripts with distinct motif bias. The functional mechanism of CELF1 may ultimately participate in cataract formation and lens development.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Siyan Jin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ju Huang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - He Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Xiao J, Tian X, Jin S, He Y, Song M, Zou H. CELF1 promotes matrix metalloproteinases gene expression at transcriptional level in lens epithelial cells. BMC Ophthalmol 2022; 22:122. [PMID: 35287612 PMCID: PMC8922852 DOI: 10.1186/s12886-022-02344-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA binding proteins (RBPs)-mediated regulation plays important roles in many eye diseases, including the canonical RBP CELF1 in cataract. While the definite molecular regulatory mechanisms of CELF1 on cataract still remain elusive. Methods In this study, we overexpressed CELF1 in human cultured lens epithelial SRA01/04 cells and applied whole transcriptome sequencing (RNA-seq) method to analyze the global differences mediated by CELF1. We then analyzed public RNA-seq and CELF1-RNA interactome data to decipher the underlying mechanisms. Results The results showed that transcriptome profile was globally changed by CELF1 overexpression (CELF1-OE). Functional analysis revealed CELF1 specifically increased the expression of genes in extracellular matrix disassembly, extracellular matrix organization, and proteolysis, which could be classified into matrix metalloproteinases (MMPs) family. This finding was also validated by RT-qPCR and public mouse early embryonic lens data. Integrating analysis with public CELF1-RNA interactome data revealed that no obvious CELF1-binding peak was found on the transcripts of these genes, indicating an indirectly regulatory role of CELF1 in lens epithelial cells. Conclusions Our study demonstrated that CELF1-OE promotes transcriptional level of MMP genes; and this regulation may be completed by other ways except for binding to RNA targets. These results suggest that CELF1-OE is implicated in the development of lens, which is associated with cataract and expands our understanding of CELF1 regulatory roles as an RNA binding protein. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02344-8.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Xin Tian
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Siyan Jin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Yanhui He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Meijiao Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - He Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China.
| |
Collapse
|
12
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
13
|
Berry V, Ionides A, Pontikos N, Moore AT, Quinlan RA, Michaelides M. Variants in PAX6, PITX3 and HSF4 causing autosomal dominant congenital cataracts. Eye (Lond) 2021; 36:1694-1701. [PMID: 34345029 PMCID: PMC9307513 DOI: 10.1038/s41433-021-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Background Lens development is orchestrated by transcription factors. Disease-causing variants in transcription factors and their developmental target genes are associated with congenital cataracts and other eye anomalies. Methods Using whole exome sequencing, we identified disease-causing variants in two large British families and one isolated case with autosomal dominant congenital cataract. Bioinformatics analysis confirmed these disease-causing mutations as rare or novel variants, with a moderate to damaging pathogenicity score, with testing for segregation within the families using direct Sanger sequencing. Results Family A had a missense variant (c.184 G>A; p.V62M) in PAX6 and affected individuals presented with nuclear cataract. Family B had a frameshift variant (c.470–477dup; p.A160R*) in PITX3 that was also associated with nuclear cataract. A recurrent missense variant in HSF4 (c.341 T>C; p.L114P) was associated with congenital cataract in a single isolated case. Conclusions We have therefore identified novel variants in PAX6 and PITX3 that cause autosomal dominant congenital cataract.
Collapse
Affiliation(s)
- Vanita Berry
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Roy A Quinlan
- School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
14
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
15
|
Cvekl A, Eliscovich C. Crystallin gene expression: Insights from studies of transcriptional bursting. Exp Eye Res 2021; 207:108564. [PMID: 33894228 DOI: 10.1016/j.exer.2021.108564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Cellular differentiation is marked by temporally and spatially regulated gene expression. The ocular lens is one of the most powerful mammalian model system since it is composed from only two cell subtypes, called lens epithelial and fiber cells. Lens epithelial cells differentiate into fiber cells through a series of spatially and temporally orchestrated processes, including massive production of crystallins, cellular elongation and the coordinated degradation of nuclei and other organelles. Studies of transcriptional and posttranscriptional gene regulatory mechanisms in lens provide a wide range of opportunities to understand global molecular mechanisms of gene expression as steady-state levels of crystallin mRNAs reach very high levels comparable to globin genes in erythrocytes. Importantly, dysregulation of crystallin gene expression results in lens structural abnormalities and cataracts. The mRNA life cycle is comprised of multiple stages, including transcription, splicing, nuclear export into cytoplasm, stabilization, localization, translation and ultimate decay. In recent years, development of modern mRNA detection methods with single molecule and single cell resolution enabled transformative studies to visualize the mRNA life cycle to generate novel insights into the sequential regulatory mechanisms of gene expression during embryogenesis. This review is focused on recent major advancements in studies of transcriptional bursting in differentiating lens fiber cells, analysis of nascent mRNA expression from bi-directional promoters, transient nuclear accumulation of specific mRNAs, condensation of chromatin prior lens fiber cell denucleation, and outlines future studies to probe the interactions of individual mRNAs with specific RNA-binding proteins (RBPs) in the cytoplasm and regulation of translation and mRNA decay.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and VIsual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Carolina Eliscovich
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
16
|
Anand D, Al Saai S, Shrestha SK, Barnum CE, Chuma S, Lachke SA. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Front Cell Dev Biol 2021; 9:615761. [PMID: 33665188 PMCID: PMC7921330 DOI: 10.3389/fcell.2021.615761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations/deficiency of TDRD7, encoding a tudor domain protein involved in post-transcriptional gene expression control, causes early onset cataract in humans. While Tdrd7 is implicated in the control of key lens mRNAs, the impact of Tdrd7 deficiency on microRNAs (miRNAs) and how this contributes to transcriptome misexpression and to cataracts, is undefined. We address this critical knowledge-gap by investigating Tdrd7-targeted knockout (Tdrd7-/-) mice that exhibit fully penetrant juvenile cataracts. We performed Affymetrix miRNA 3.0 microarray analysis on Tdrd7-/- mouse lenses at postnatal day (P) 4, a stage preceding cataract formation. This analysis identifies 22 miRNAs [14 over-expressed (miR-15a, miR-19a, miR-138, miR-328, miR-339, miR-345, miR-378b, miR-384, miR-467a, miR-1224, miR-1935, miR-1946a, miR-3102, miR-3107), 8 reduced (let-7b, miR-34c, miR-298, miR-382, miR-409, miR-1198, miR-1947, miR-3092)] to be significantly misexpressed (fold-change ≥ ± 1.2, p-value < 0.05) in Tdrd7-/- lenses. To understand how these misexpressed miRNAs impact Tdrd7-/- cataract, we predicted their mRNA targets and examined their misexpression upon Tdrd7-deficiency by performing comparative transcriptomics analysis on P4 and P30 Tdrd7-/- lens. To prioritize these target mRNAs, we used various stringency filters (e.g., fold-change in Tdrd7-/- lens, iSyTE-based lens-enriched expression) and identified 98 reduced and 89 elevated mRNA targets for overexpressed and reduced miRNAs, respectively, which were classified as “top-priority” “high-priority,” and “promising” candidates. For Tdrd7-/- lens overexpressed miRNAs, this approach identified 18 top-priority reduced target mRNAs: Alad, Ankrd46, Ceacam10, Dgat2, Ednrb, H2-Eb1, Klhl22, Lin7a, Loxl1, Lpin1, Npc1, Olfm1, Ppm1e, Ppp1r1a, Rgs8, Shisa4, Snx22 and Wnk2. Majority of these targets were also altered in other gene-specific perturbation mouse models (e.g., Brg1, E2f1/E2f2/E2f3, Foxe3, Hsf4, Klf4, Mafg/Mafk, Notch) of lens defects/cataract, suggesting their importance to lens biology. Gene ontology (GO) provided further insight into their relevance to lens pathology. For example, the Tdrd7-deficient lens capsule defect may be explained by reduced mRNA targets (e.g., Col4a3, Loxl1, Timp2, Timp3) associated with “basement membrane”. GO analysis also identified new genes (e.g., Casz1, Rasgrp1) recently linked to lens biology/pathology. Together, these analyses define a new Tdrd7-downstream miRNA-mRNA network, in turn, uncovering several new mRNA targets and their associated pathways relevant to lens biology and offering molecular insights into the pathology of congenital cataract.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| | - Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|