1
|
Gracheva AS, Kashatnikova DA, Redkin IV, Zakharchenko VE, Kuzovlev AN, Salnikova LE. Genetics and Traumatic Brain Injury: Findings from an Exome-Based Study of a 50-Patient Case Series. Curr Issues Mol Biol 2024; 46:10351-10368. [PMID: 39329968 PMCID: PMC11430351 DOI: 10.3390/cimb46090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of global mortality and morbidity. Because TBI is accident-related, the role of genetics in predisposing to TBI has been largely unexplored. However, the likelihood of injury may not be entirely random and may be associated with certain physical and mental characteristics. In this study, we analyzed the exomes of 50 patients undergoing rehabilitation after TBI. Patients were divided into three groups according to rehabilitation outcome: improvement, no change, and deterioration/death. We focused on rare, potentially functional missense and high-impact variants in genes intolerant to these variants. The concordant results from the three independent groups of patients allowed for the suggestion of the existence of a genetic predisposition to TBI, associated with rare functional variations in intolerant genes, with a prevalent dominant mode of inheritance and neurological manifestations in the genetic phenotypes according to the OMIM database. Forty-four of the 50 patients had one or more rare, potentially deleterious variants in one or more neurological genes. Comparison of these results with those of a 50-sampled matched non-TBI cohort revealed significant differences: P = 2.6 × 10-3, OR = 4.89 (1.77-13.47). There were no differences in the distribution of the genes of interest between the TBI patient groups. Our exploratory study provides new insights into the impact of genetics on TBI risk and is the first to address potential genetic susceptibility to TBI.
Collapse
Affiliation(s)
- Alesya S Gracheva
- The Department of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Darya A Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Molecular Pathophysiology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ivan V Redkin
- The Laboratory of Organoprotection in Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Vladislav E Zakharchenko
- The Department of Clinical Laboratory Diagnostics, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Artem N Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Lyubov E Salnikova
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- The Laboratory of Molecular Immunology, National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
2
|
Tong SY, Fan K, Zhou ZW, Liu LY, Zhang SQ, Fu Y, Wang GZ, Zhu Y, Yu YC. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:414-426. [PMID: 35940520 PMCID: PMC10626173 DOI: 10.1016/j.gpb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.
Collapse
Affiliation(s)
- Shi-Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ke Fan
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zai-Wei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai 201802, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Zhu
- Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Kashatnikova DA, Khadzhieva MB, Kolobkov DS, Belopolskaya OB, Smelaya TV, Gracheva AS, Kalinina EV, Larin SS, Kuzovlev AN, Salnikova LE. Pneumonia and Related Conditions in Critically Ill Patients—Insights from Basic and Experimental Studies. Int J Mol Sci 2022; 23:ijms23179896. [PMID: 36077293 PMCID: PMC9456259 DOI: 10.3390/ijms23179896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is an acute infectious disease with high morbidity and mortality rates. Pneumonia’s development, severity and outcome depend on age, comorbidities and the host immune response. In this study, we combined theoretical and experimental investigations to characterize pneumonia and its comorbidities as well as to assess the host immune response measured by TREC/KREC levels in patients with pneumonia. The theoretical study was carried out using the Columbia Open Health Data (COHD) resource, which provides access to clinical concept prevalence and co-occurrence from electronic health records. The experimental study included TREC/KREC assays in young adults (18–40 years) with community-acquired (CAP) (n = 164) or nosocomial (NP) (n = 99) pneumonia and healthy controls (n = 170). Co-occurring rates between pneumonia, sepsis, acute respiratory distress syndrome (ARDS) and some other related conditions common in intensive care units were the top among 4170, 3382 and 963 comorbidities in pneumonia, sepsis and ARDS, respectively. CAP patients had higher TREC levels, while NP patients had lower TREC/KREC levels compared to controls. Low TREC and KREC levels were predictive for the development of NP, ARDS, sepsis and lethal outcome (AUCTREC in the range 0.71–0.82, AUCKREC in the range 0.67–0.74). TREC/KREC analysis can be considered as a potential prognostic test in patients with pneumonia.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maryam B. Khadzhieva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olesya B. Belopolskaya
- The Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tamara V. Smelaya
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Alesya S. Gracheva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Ekaterina V. Kalinina
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Sergey S. Larin
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Lyubov E. Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Correspondence:
| |
Collapse
|