1
|
Nam DW, Song YK, Kim JH, Lee EK, Park KH, Cha J, Choi BY, Lee JH, Oh SH, Jo DH, Lee SY. Allelic hierarchy for USH2A influences auditory and visual phenotypes in South Korean patients. Sci Rep 2023; 13:20239. [PMID: 37981655 PMCID: PMC10658080 DOI: 10.1038/s41598-023-47166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
When medical genetic syndromes are influenced by allelic hierarchies, mutant alleles have distinct effects on clinical phenotypes. Genotype-phenotype correlations for Usher syndrome type 2 (USH2) suggest that the USH2A gene exhibits an allelic hierarchy. Here, we analyzed the phenotypes and genotypes of 16 South Korean patients with USH2A biallelic variants to investigate an allelic hierarchy from audiological and ophthalmological perspectives. Using whole exome and genome sequencing, 18 mutant alleles, including 4 novel alleles, were identified and implicated in USH2A-related disorders. Truncated alleles were linked to earlier onset of subjective hearing loss and more severe thresholds; biallelic truncated alleles had more severe effects. Truncated alleles were also associated with retinal structure degeneration and severe functional deterioration. However, younger patients (aged < 16 years) did not exhibit overt retinitis pigmentosa even when they had biallelic truncated alleles, suggesting that USH2A-related USH2 can mimic nonsyndromic hearing loss. For truncated alleles, there was a clear correlation between mean hearing threshold and 30-Hz flicker electroretinography implicit time. This study provides the first evidence of an USH2A-related allelic hierarchy among South Korean patients; our data yield valuable insights concerning the natural courses of clinical phenotypes and how genotype-based therapies may be used.
Collapse
Affiliation(s)
- Dong Woo Nam
- Department of Otorhinolaryngology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yong Keun Song
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - JuHyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Nam DW, Kang DW, Lee SM, Park MK, Lee JH, Oh SH, Suh MW, Lee SY. Molecular Genetic Etiology and Revisiting the Middle Ear Surgery Outcomes of Branchio-Oto-Renal Syndrome: Experience in a Tertiary Referral Center. Otol Neurotol 2023; 44:e319-e327. [PMID: 37167448 DOI: 10.1097/mao.0000000000003880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To explore the phenotypes and genotypes of patients with branchio-oto-renal (BOR) and branchio-otic (BO) syndrome, and to analyze the middle ear surgery outcomes qualitatively and quantitatively, proposing a factor usefully prognostic of surgical outcomes. STUDY DESIGN Retrospective cohort study. SETTING Tertiary referral center. PATIENTS Eighteen patients with BOR/BO syndrome in 12 unrelated Korean families. INTERVENTION Middle ear surgery, including either stapes surgery or ossicular reconstruction. MAIN OUTCOME MEASURE Clinical phenotypes, genotypes, and middle ear surgery outcomes. RESULTS Eight probands (66.7%) were confirmed genetically; the condition segregated as a dominant or de novo trait. Six EYA1 heterozygous variants were identified by exome sequencing and multiplex ligation-dependent probe amplification. All variants were pathogenic or likely pathogenic based on the ACMG/AMP guidelines. Two novel EYA1 frameshift variants (p.His373Phefs*4 and p.Gln543Asnfs*90) truncating a highly conserved C-terminal Eya domain were identified, expanding the genotypic spectrum of EYA1 in BOR/BO syndrome. Remarkably, middle ear surgery was individualized to ensure optimal audiological outcomes and afforded significant audiological improvements, especially in BOR/BO patients without enlarged vestibular aqueducts (EVAs). A significant difference in air-bone gap closure after middle ear surgery was noted between the two groups even after adjusting for confounders: -20.5 dB in ears without EVAs (improvement) but 0.8 dB in ears with EVAs (no change or deterioration). Furthermore, the success rate was significantly associated with the absence of EVA. CONCLUSIONS The results of this study were against the notion that middle ear surgery is always contraindicated in patients with BOR/BO syndrome, and an EVA could be a negative prognostic indicator of middle ear surgery in BOR/BO patients. This may aid to determine the strategy of audiological rehabilitation in patients with BOR/BO syndrome.
Collapse
Affiliation(s)
- Dong Woo Nam
- Department of Otorhinolaryngology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Dae Woong Kang
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
3
|
Lim HD, Lee SM, Yun YJ, Lee DH, Lee JH, Oh SH, Lee SY. WFS1 autosomal dominant variants linked with hearing loss: update on structural analysis and cochlear implant outcome. BMC Med Genomics 2023; 16:79. [PMID: 37041640 PMCID: PMC10088283 DOI: 10.1186/s12920-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Wolfram syndrome type 1 gene (WFS1), which encodes a transmembrane structural protein (wolframin), is essential for several biological processes, including proper inner ear function. Unlike the recessively inherited Wolfram syndrome, WFS1 heterozygous variants cause DFNA6/14/38 and wolfram-like syndrome, characterized by autosomal dominant nonsyndromic hearing loss, optic atrophy, and diabetes mellitus. Here, we identified two WFS1 heterozygous variants in three DFNA6/14/38 families using exome sequencing. We reveal the pathogenicity of the WFS1 variants based on three-dimensional (3D) modeling and structural analysis. Furthermore, we present cochlear implantation (CI) outcomes in WFS1-associated DFNA6/14/38 and suggest a genotype-phenotype correlation based on our results and a systematic review. METHODS We performed molecular genetic test and evaluated clinical phenotypes of three WFS1-associated DFNA6/14/38 families. A putative WFS1-NCS1 interaction model was generated, and the impacts of WFS1 variants on stability were predicted by comparing intramolecular interactions. A total of 62 WFS1 variants associated with DFNA6/14/38 were included in a systematic review. RESULTS One variant is a known mutational hotspot variant in the endoplasmic reticulum (ER)-luminal domain WFS1(NM_006005.3) (c.2051 C > T:p.Ala684Val), and the other is a novel frameshift variant in transmembrane domain 6 (c.1544_1545insA:p.Phe515LeufsTer28). The two variants were pathogenic, based on the ACMG/AMP guidelines. Three-dimensional modeling and structural analysis show that non-polar, hydrophobic substitution of Ala684 (p.Ala684Val) destabilizes the alpha helix and contributes to the loss of WFS1-NCS1 interaction. Also, the p.Phe515LeufsTer28 variant truncates transmembrane domain 7-9 and the ER-luminal domain, possibly impairing membrane localization and C-terminal signal transduction. The systematic review demonstrates favorable outcomes of CI. Remarkably, p.Ala684Val in WFS1 is associated with early-onset severe-to-profound deafness, revealing a strong candidate variant for CI. CONCLUSIONS We expanded the genotypic spectrum of WFS1 heterozygous variants underlying DFNA6/14/38 and revealed the pathogenicity of mutant WFS1, providing a theoretical basis for WFS1-NCS1 interactions. We presented a range of phenotypic traits for WFS1 heterozygous variants and demonstrated favorable functional CI outcomes, proposing p.Ala684Val a strong potential marker for CI candidates.
Collapse
Affiliation(s)
- Hui Dong Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye Jin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc, 21, Yuseong-daero, 1205beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Corresponding author at: Department of Molecular Medicine, University of Oslo, Oslo, Norway.
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
- Corresponding author.
| |
Collapse
|
5
|
Genetic Load of Alternations of Transcription Factor Genes in Non-Syndromic Deafness and the Associated Clinical Phenotypes: Experience from Two Tertiary Referral Centers. Biomedicines 2022; 10:biomedicines10092125. [PMID: 36140227 PMCID: PMC9495667 DOI: 10.3390/biomedicines10092125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Sensorineural hearing loss is one of the most common inherited sensory disorders. Functional classifications of deafness genes have shed light on genotype- and mechanism-based pharmacological approaches and on gene therapy strategies. In this study, we characterized the clinical phenotypes and genotypes of non-syndromic deafness caused by transcription factor (TF) gene variants, one of the functional classifications of genetic hearing loss. Of 1280 probands whose genomic DNA was subjected to molecular genetic testing, TF genes were responsible for hearing loss in 2.6%. Thirty-three pathogenic variants, including nine novel variants, accounting for non-syndromic deafness were clustered in only four TF genes (POU3F4, POU4F3, LMX1A, and EYA4), which is indicative of a narrow molecular etiologic spectrum of TF genes, and the functional redundancy of many other TF genes, in the context of non-syndromic deafness. The audiological and radiological characteristics associated with the four TF genes differed significantly, with a wide phenotypic spectrum. The results of this study reveal the genetic load of TF gene alterations among a cohort with non-syndromic hearing loss. Additionally, we have further refined the clinical profiles associated with TF gene variants as a basis for a personalized, genetically tailored approach to audiological rehabilitation.
Collapse
|