1
|
Abstract
Spinocerebellar ataxia type 7 (SCA7) is associated with progressive blindness, dominant transmission, and marked anticipation. SCA7 represents one of the polyglutamine expansion diseases with increase of CAG repeats. The gene maps to chromosome 3p12-p21.1. Normal values of CAG repeats range from 4 to 18. The SCA7 gene encodes a protein of largely unknown function, called ataxin-7. SCA7 is reported in many countries and ethnic groups. Its phenotypic expression depends on the number of expanded repeats. The infantile phenotype is very severe, with more than 100 repeats. The classic type has 50 to 55 repeats and is characterized by a combination of visual and ataxic disturbances lasting for 20-40 years.When the number of CAG repeats is between 36 and 43, the evolution is much slower, with few or no retinal abnormalities. A CAG repeat number from 18 to 35 is asymptomatic but predisposes to the development of the disorder when expanding to the pathological range through transmission. The diagnosis is made by molecular genetics. The neuropathology of the disorder includes atrophy of the spinocerebellar pathways, pyramidal tracts, and motor nuclei in the brainstem and spinal cord, a cone-rod sytrophy of the retina, and ataxin-7 immunoreactive neuronal intranuclear inclusions. The neuropathological features vary as a function of the number of CAG repeats. Present research deals mainly with the study of ataxin-7 in transfected neural cells and transgenic mouse models.
Collapse
|
2
|
da Cunha Linhares S, Horta WG, Marques Júnior W. Spinocerebellar ataxia type 7 (SCA7): family princeps’ history, genealogy and geographical distribution. ARQUIVOS DE NEURO-PSIQUIATRIA 2006; 64:222-7. [PMID: 16791360 DOI: 10.1590/s0004-282x2006000200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We conducted a 320 year retrospective survey of the history and genealogy of a large Brazilian family with SCA7. The ancestral couple was from the State of Ceará, Brazil, and the genealogical tree was composed of 577 individuals, including 217 males (37.6%), 255 females (44.1%) and 105 individuals of unknown sex (18.1%). Based on collected information, the 118 individuals consistently affected were distributed in generations IV (n=2), V (n=28), VI (n=57), VII (n=25) and VIII (n=6) of the genealogical tree. Sixty affected members are alive, 37 of them (61.6%) live in the Northeast region, 12 (20%) in the Southeast, 9 (15%) in the Center-West and 2 (3.3%) in the North. This genealogical survey was based only on 4 of the 10 children of the ancestral couple since the destiny of the remaining 6 is unknown. We propose that other Brazilian families with SCA7 may have the same genetic origin.
Collapse
Affiliation(s)
- Salomão da Cunha Linhares
- Department of Neurology, School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
3
|
Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2003; 12:2-15. [PMID: 14571264 DOI: 10.1038/sj.ejhg.5201108] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant, late-onset, slowly progressive disorder, primarily characterized by gradual loss of motor coordination, resulting from dysfunction and degeneration of the cerebellum and its connecting pathways. The disease is caused by expansion of a CAG trinucleotide repeat within the SCA7 gene, which encodes a polyglutamine tract within a novel protein, termed ataxin-7. The expansion of polyglutamine-encoding CAG repeats in dissimilar genes underlies eight neurodegenerative conditions besides SCA7, including a number of dominant ataxias related to SCA7. Although elongated polyglutamine itself can initiate neuronal dysfunction and death, its toxicity is modulated by the context of the disease proteins, as evidenced by the differing clinical and pathological presentation of the various disorders. In this respect, it is exciting that SCA7 constitutes the only polyglutamine disorder, in which the photoreceptors of the retina are also severely affected, leading to retinal degeneration and blindness. Since the discovery of the SCA7 mutation, numerous studies attempted to pinpoint the molecular mechanisms underlying the unique features of SCA7, particularly the retinal involvement. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder.
Collapse
Affiliation(s)
- A Michalik
- Department of Molecular Genetics, Neurogenetics Group, Flanders Interuniversity Institute for Biotechnology, Antwerpen, Belgium
| | | | | |
Collapse
|
4
|
Lebre AS, Brice A. Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 2003; 100:154-63. [PMID: 14526176 DOI: 10.1159/000072850] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Accepted: 12/14/2002] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia 7 (SCA7) is a progressive autosomal dominant neurodegenerative disorder characterized clinically by cerebellar ataxia associated with progressive macular dystrophy. The disease affects primarily the cerebellum and the retina, but also many other CNS structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats. SCA7 has a number of features in common with other diseases with polyglutamine expansions: (i) the appearance of clinical symptoms above a threshold number of CAG repeats (>35); (ii) a correlation between the size of the expansion and the rate of progression of the disease: the larger the repeat, the faster the progression; (iii) instability of the repeat sequence (approximately 12 CAG/transmission) that accounts for the marked anticipation of approximately 20 years/generation. The CAG repeat sequence is particularly unstable and de novo mutations can occur during paternal transmissions of intermediate size alleles (28-35 CAG repeats). This can explain the persistence of the disease in spite of the anticipation that should have resulted in its extinction.
Collapse
Affiliation(s)
- A-S Lebre
- INSERM U289, Groupe hospitalier Pitié-Salpêtrière, Paris, France.
| | | |
Collapse
|
5
|
Jilek A, Engel E, Beier D, Lepperdinger G. Murine Bv8 gene maps near a synteny breakpoint of mouse chromosome 6 and human 3p21. Gene 2000; 256:189-95. [PMID: 11054548 DOI: 10.1016/s0378-1119(00)00355-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genomic structure of the murine Bv8 gene was determined in 129/SvJ mouse, and the chromosomal localization was identified. Bv8 has first been characterized from skin secretion of the yellow-bellied toad, Bombina variegata. When injected into rat brain, this polypetide causes hyperalgesia. The murine Bv8 gene was shown to consist of four exons and was localized on chromosome 6 between the microsatellite markers D6Mit66 and D6Mit36 near the gene mem1, whereas the human counterpart was assigned to the non-syntenic region 3p21.1. Furthermore, the primary Bv8 transcript appeared to be alternatively spliced. The first variant contained all four exons yielding a product with a stretch highly enriched in basic amino acids in its central part. This domain is absent in the peptides from frog as well as in a splice variant expressed in mouse testis. A third variant gives rise to a truncated polypeptide.
Collapse
Affiliation(s)
- A Jilek
- Institute of Molecular Biology, Department of Biochemistry, Austrian Academy of Sciences, Billrothstr. 11, A-5020, Salzburg, Austria
| | | | | | | |
Collapse
|
6
|
Clarke G, Héon E, McInnes RR. Recent advances in the molecular basis of inherited photoreceptor degeneration. Clin Genet 2000; 57:313-29. [PMID: 10852366 DOI: 10.1034/j.1399-0004.2000.570501.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date, 118 loci have been associated with photoreceptor degenerative disease. In this review, we will discuss recent advances in the identification of genes that cause progressive photoreceptor cell death when mutated. We will focus on 12 genes isolated within the last two years that have been shown to be photoreceptor-specific, or that have provided insight into photoreceptor biology and the mechanisms of photoreceptor cell death. To aid in understanding the biologic basis for these diseases, we also briefly review photoreceptor biology. Finally, we report on recent advances towards the treatment of these disorders.
Collapse
Affiliation(s)
- G Clarke
- Program in Developmental Biology and Genetics, The Research Institute, Hospital for Sick Children, Toronto, Ontario
| | | | | |
Collapse
|
7
|
Monckton DG, Cayuela ML, Gould FK, Brock GJ, Silva R, Ashizawa T. Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. Hum Mol Genet 1999; 8:2473-8. [PMID: 10556295 DOI: 10.1093/hmg/8.13.2473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic anticipation, i.e. increasing disease severity and decreasing age of onset from one generation to the next, is observed in a number of diseases, including myotonic dystrophy type 1, Huntington's disease and several of the spinocerebellar ataxias. All of these disorders are associated with the expansion of a trinucleotide repeat and array length is positively correlated with disease severity and inversely correlated with the age of onset. The expanded repeat is highly unstable and continues to expand from one generation to the next, providing a molecular explanation for anticipation. Spinocerebellar ataxia type 7 (SCA7) is one of the latest additions to the list of triplet repeat diseases and is distinct from the other SCAs in that it is accompanied by retinal degeneration. Pedigree analyses have previously revealed that the SCA7 repeat is highly unstable and liable to expand, in particular when transmitted by a male. Surprisingly, though, an under-representation of male transmission has also been reported. We now demonstrate directly by single molecule analyses that the expanded repeat is extraordinarily unstable in the male germline and biased toward massive increases. Nearly all of the mutant sperm of two SCA7 males contain alleles that are so large that most of the affected offspring would at best have a severe infantile form of the disease. Indeed, the gross under-representation of such very large expanded alleles in patients suggests that a significant proportion of such alleles might be associated with embryonic lethality or dysfunctional sperm.
Collapse
Affiliation(s)
- D G Monckton
- Division of Molecular Genetics, Institute for Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Martin J, Van Regemorter N, Del-Favero J, Löfgren A, Van Broeckhoven C. Spinocerebellar ataxia type 7 (SCA7) - correlations between phenotype and genotype in one large Belgian family. J Neurol Sci 1999; 168:37-46. [PMID: 10500272 DOI: 10.1016/s0022-510x(99)00176-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7), in which the degenerative process also affect the retina, belongs to the category of the autosomal dominant cerebellar ataxia type II (ADCA II). We have described the neuropathology of this condition [Martin JJ, Van Regemorter N, Krols L, Brucher JM, de Barsy T, Szliwowski H, et al. On an autosomal dominant form of retino-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol (Berl) 1994;88:277-286] in a very large Belgian family (CA-1). We have observed anticipation in the age of onset with increasing severity of the symptoms in consecutive generations. The SCA7 gene was mapped to chromosome 3p12-13 [David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997;17:65-70; Del-Favero J, Krols L, Michalik A, Theuns J, Löfgren A, Goossens D, et al. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet 1998;7:177-186], and the gene identified. SCA7 is a new gene of unknown function that contains an expansion of CAG repeats in SCA7 patients. During the procedure of positional cloning, we examined 26 patients belonging to the CA-1 family and realized, in some of them, an ophthalmologic examination and neuro-imaging of the brain. This allowed us to differentiate four groups: (1) asymptomatic young carriers with 38 to 43 CAG repeats; (2) mildly symptomatic, older patients with 38-41 CAG repeats; (3) patients with the full-blown picture of SCA7 and age of onset during adolescence, with 54-55 CAG repeats; (4) children with early onset and rapid fatal course of the disease who had over 55 CAG repeats. We were able to draw correlations between clinical phenotype, age at onset and CAG repeat number and to make predictions, to some extent, as to the clinical course of the disease in new patients.
Collapse
Affiliation(s)
- J Martin
- Department of Neurology, University Hospital of Antwerp, University of Antwerp (UIA), Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. CYTOGENETICS AND CELL GENETICS 1999; 84:156-60. [PMID: 10393418 DOI: 10.1159/000015245] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new multicolor-banding technique has been developed which allows the differentiation of chromosome region specific areas at the band level. This technique is based on the use of differently labeled overlapping microdissection libraries. The changing fluorescence intensity ratios along the chromosomes are used to assign different pseudo-colors to specific chromosome regions. The multicolor banding of human chromosome 5 is presented as an example.
Collapse
Affiliation(s)
- I Chudoba
- Institute of Human Genetics and Anthropology, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet 1999; 64:1594-603. [PMID: 10330346 PMCID: PMC1377902 DOI: 10.1086/302406] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The SCA7 mutation has been found in 54 patients and 7 at-risk subjects from 17 families who have autosomal dominant cerebellar ataxia (ADCA) II with progressive pigmentary maculopathy. In one isolated case, haplotype reconstruction through three generations confirmed a de novo mutation owing to paternal meiotic instability. Different disease-associated haplotypes segregated among the SCA7-positive kindreds, which indicated a multiple origin of the mutation. One family with the clinical phenotype of ADCA type II did not have the CAG expansion that indicated locus heterogeneity. The distribution of the repeat size in 944 independent normal chromosomes from controls, unaffected at-risk subjects, and one affected individual fell into two ranges. The majority of the alleles were in the first range of 7-19 CAG repeats. A second range could be identified with 28-35 repeats, and we provide evidence that these repeats represent intermediate alleles that are prone to further expansion. The repeat size of the pathological allele, the widest reported for all CAG-repeat disorders, ranged from 37 to approximately 220. The repeat size showed significant negative correlation with both age at onset and age at death. Analysis of the clinical features in the patients with SCA7 confirmed that the most frequently associated features are pigmentary maculopathy, pyramidal tract involvement, and slow saccades. The subjects with <49 repeats tended to have a less complicated neurological phenotype and a longer disease duration, whereas the converse applied to subjects with >/=49 repeats. The degree of instability during meiotic transmission was greater than in all other CAG-repeat disorders and was particularly striking in paternal transmission, in which a median increase in repeat size of 6 and an interquartile range of 12 were observed, versus a median increase of 3 and interquartile range of 3.5 in maternal transmission.
Collapse
Affiliation(s)
- P Giunti
- Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Zu L, Figueroa KP, Grewal R, Pulst SM. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet 1999; 64:594-9. [PMID: 9973298 PMCID: PMC1377770 DOI: 10.1086/302247] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders. The clinical symptoms include cerebellar dysfunction and associated signs from dysfunction in other parts of the nervous system. So far, five spinocerebellar ataxia (SCA) genes have been identified: SCA1, SCA2, SCA3, SCA6, and SCA7. Loci for SCA4 and SCA5 have been mapped. However, approximately one-third of SCAs have remained unassigned. We have identified a Mexican American pedigree that segregates a new form of ataxia clinically characterized by gait and limb ataxia, dysarthria, and nystagmus. Two individuals have seizures. After excluding all known genetic loci for linkage, we performed a genomewide search and identified linkage to a 15-cM region on chromosome 22q13. A maximum LOD score of 4.3 (recombination fraction 0) was obtained for D22S928 and D22S1161. This distinct form of ataxia has been designated "SCA10." Anticipation was observed in the available parent-child pairs, suggesting that trinucleotide-repeat expansion may be the mutagenic mechanism.
Collapse
Affiliation(s)
- L Zu
- Division of Neurology and Rose Moss Laboratory for Parkinson's and Neurodegenerative Diseases, Burns and Allen Research Institute, Cedars-Sinai Medical Center, University of California, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
12
|
Stevanin G, Giunti P, Belal GD, Dürr A, Ruberg M, Wood N, Brice A. De novo expansion of intermediate alleles in spinocerebellar ataxia 7. Hum Mol Genet 1998; 7:1809-13. [PMID: 9736784 DOI: 10.1093/hmg/7.11.1809] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinocerebellar ataxia 7 (SCA7) is the eighth neurodegenerative disorder caused by a translated CAG repeat expansion. Normal SCA7 alleles carry from four to 35 CAG repeats, whereas pathological alleles carry from 37 to approximately 200. Intermediate alleles (IAs), with 28-35 repeats in the SCA7 gene are exceedingly rare in the general population and are not associated with the SCA7 phenotype, although they have been found among relatives of four SCA7 families. In two of these families, IAs bearing 35 and 28 CAG repeats gave rise, during paternal transmission, to SCA7 expansions of 57 and 47 repeats, respectively, that were confirmed by haplotype reconstructions in one case and by inference in the other. Furthermore, the four haplotypes segregating with IAs were identical to the expanded alleles in each kindred, but differed among the families, indicating multiple origins of the SCA7 mutation in these families with different geographical origins. Our results provide the first evidence of de novo SCA7 expansions from IAs that are not associated with the phenotype but can expand to the pathological range during some paternal transmissions. IAs that segregate in unaffected branches of the pedigrees might, therefore, constitute a reservoir for future de novo mutations that occur in a recurrent but random manner. This would explain the persistence of the disease in spite of the great anticipation (approximately 20 years/generation) characteristic of SCA7. So far, de novo expansions among the disorders caused by polyglutamine repeats have only been demonstrated in Huntington's disease.
Collapse
Affiliation(s)
- G Stevanin
- INSERM U289, Hôpital de la Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17:65-70. [PMID: 9288099 DOI: 10.1038/ng0997-65] [Citation(s) in RCA: 484] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene for spinocerebellar ataxia 7 (SCA7) has been mapped to chromosome 3p12-13. By positional cloning, we have identified a new gene of unknown function containing a CAG repeat that is expanded in SCA7 patients. On mutated alleles, CAG repeat size is highly variable, ranging from 38 to 130 repeats, whereas on normal alleles it ranges from 7 to 17 repeats. Gonadal instability in SCA7 is greater than that observed in any of the seven known neuro-degenerative diseases caused by translated CAG repeat expansions, and is markedly associated with paternal transmissions. SCA7 is the first such disorder in which the degenerative process also affects the retina.
Collapse
Affiliation(s)
- G David
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|