1
|
Liu H, Xu K, He Y, Huang F. Mitochondria in Multi-Directional Differentiation of Dental-Derived Mesenchymal Stem Cells. Biomolecules 2023; 14:12. [PMID: 38275753 PMCID: PMC10813276 DOI: 10.3390/biom14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The pursuit of tissue regeneration has fueled decades of research in regenerative medicine. Among the numerous types of mesenchymal stem cells (MSCs), dental-derived mesenchymal stem cells (DMSCs) have recently emerged as a particularly promising candidate for tissue repair and regeneration. In recent years, evidence has highlighted the pivotal role of mitochondria in directing and orchestrating the differentiation processes of DMSCs. Beyond mitochondrial energy metabolism, the multifaceted functions of mitochondria are governed by the mitochondrial quality control (MQC) system, encompassing biogenesis, autophagy, and dynamics. Notably, mitochondrial energy metabolism not only governs the decision to differentiate but also exerts a substantial influence on the determination of differentiation directions. Furthermore, the MQC system exerts a nuanced impact on the differentiation of DMSCs by finely regulating the quality and mass of mitochondria. The review aims to provide a comprehensive overview of the regulatory mechanisms governing the multi-directional differentiation of DMSCs, mediated by both mitochondrial energy metabolism and the MQC system. We also focus on a new idea based on the analysis of data from many research groups never considered before, namely, DMSC-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| |
Collapse
|
2
|
Astudillo-Ortiz E, Babo PS, Sunde PT, Galler KM, Gomez-Florit M, Gomes ME. Endodontic Tissue Regeneration: A Review for Tissue Engineers and Dentists. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:491-513. [PMID: 37051704 DOI: 10.1089/ten.teb.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others. This fact triggered some misinterpretations, mainly when the denominations of different approaches were used as synonyms. The evaluation of results is not precise, leading to biased conjectures. Therefore, this literature review aims to conceptualize the commonly used terminology, summarize the main research areas on pulp regeneration, identify future trends, and ultimately clarify whether we are really on the edge of a paradigm shift in contemporary endodontics toward pulp regeneration.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Endodontics, School of Dentistry, University of Cuenca, Cuenca, Ecuador
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Pia T Sunde
- Department of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
3
|
Yu H, Habibi M, Motamedi K, Semirumi DT, Ghorbani A. Utilizing stem cells in reconstructive treatments for sports injuries: An innovative approach. Tissue Cell 2023; 83:102152. [PMID: 37451009 DOI: 10.1016/j.tice.2023.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Orthopedic tissue engineering is a rapidly evolving field that holds great promise for the reconstruction and natural repair of bone and joint tissues. Bone loss, fractures, and joint degeneration are common problems that can result from a variety of pathological conditions, and their restoration and replacement are essential not only for functional purposes but also for improving the quality of life for patients. However, current methods rely heavily on artificial materials that can potentially lead to further tissue damage, making tissue engineering a highly attractive alternative. This innovative approach involves the utilization of stem cells (SCs), which are seeded onto a scaffold to form a biological complex. Among these SCs, mesenchymal stem cells (MSCs) extracted from bone marrow and adipose tissue have shown immense potential for bone and joint tissue regeneration. The success of orthopedic tissue engineering is contingent on the careful selection of appropriate scaffolds and inducing molecules, which play a critical role in carrying and supporting cells and inducing their differentiation. This review article comprehensively analyzes the three vital aspects of orthopedic tissue engineering - SCs, scaffolds, and inducing molecules - in order to provide a deeper understanding of this emerging field and its potential for the future of orthopedic medicine.
Collapse
Affiliation(s)
- Hongying Yu
- Physical Education Department, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - M Habibi
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - K Motamedi
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - D T Semirumi
- Department of Biomaterials, Islamic Azad University, Isfahan, Iran.
| | - A Ghorbani
- Biotechnology Department, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
4
|
She Y, Zhang Y, Xiao Z, Yuan G, Yang G. The regulation of Msx1 by BMP4/pSmad1/5 signaling is mediated by importin7 in dental mesenchymal cells. Cells Dev 2022; 169:203763. [PMID: 34995814 DOI: 10.1016/j.cdev.2021.203763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Msx1 is essential for the maintenance of the odontogenic fate of dental mesenchymal cells, and is regulated by BMP/Smad1/5 signaling in a Smad4-independent manner. However, the exact co-factors that assist pSmad1/5 entering the nucleus to regulate Msx1 in dental mesenchymal cells are still unknown. Importin7 (IPO7) is one of the important members of importin β-superfamily, which is mainly responsible for nucleocytoplasmic shuttling of RNAs and proteins, including transcription factors. This study aims to investigate whether IPO7 participates in the nuclear translocation of pSmad1/5 activated by BMP4 to regulate Msx1 expression in mouse dental mesenchymal cells. In the current study, we found that IPO7 was strongly expressed in the mouse dental mesenchymal cells at postnatal day 1 (PN1) both in vitro and in vivo. With BMP4 stimulation, IPO7 showed a translocation from the cytoplasm to the nucleus. Knockdown of IPO7 with siRNA inhibited the nuclear accumulation of pSmad1/5 in response to BMP4 stimulation. Furthermore, the co-immunoprecipitation assay showed pSmad1/5 was a nuclear import cargo of IPO7. Next, knockdown of IPO7 abolished the upregulation of Msx1 induced by BMP4, while overexpression of Smad1 was able to rescue the Msx1 expression. Finally, ChIP and Re-ChIP assay showed IPO7 facilitated the recruitment of pSmad1/5 to the Msx1 promoter. Taken together, our data demonstrated that the regulation of Msx1 by BMP4/pSmad1/5 signaling is mediated by importin7 in mouse dental mesenchymal cells.
Collapse
Affiliation(s)
- Yawei She
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziqiu Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Chen H, Kang J, Zhang F, Yan T, Fan W, He H, Huang F. SIRT4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions. Int J Biochem Cell Biol 2021; 134:105962. [PMID: 33636397 DOI: 10.1016/j.biocel.2021.105962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION SIRT4 is a mitochondrial sirtuin. Owing to its dependance on the cofactor nicotinamide adenine dinucleotide (NAD+), SIRT4 can act as a mitochondrial metabolic sensor of cellular energy status. We have previously shown that enhancement of mitochondrial functions is vital for the odontogenic diff ;erentiation of dental papilla cells (DPCs) during dentinogenesis. However, whether SIRT4 serves as an effective regulator of DPC diff ;erentiation by affecting mitochondrial functions remains unexplored. METHODS Primary DPCs obtained from the first molar dental papilla of neonatal Sprague-Dawley rats were used in this study. The expression pattern of SIRT4 was observed by immunohistochemistry in the first molar of postnatal day 1 (P1) rats. The changes in SIRT4 expression during odontogenic DPC differentiation were evaluated using real-time quantitative polymerase chain reaction (PCR), western blotting, and immunofluorescence. DPCs with loss (small interfering RNA-mediated knockdown) and gain (plasmid transfection-induced overexpression) of SIRT4 function were used to explore the role of SIRT4 in odontogenic differentiation. Mitochondrial function assays were performed using ATP, reactive oxygen species (ROS), and NAD+/NADH kits to investigate the potential mechanisms involved in SIRT4-mediated dentinogenesis. RESULTS In the present study, we found that SIRT4 expression increased in a time-dependent manner during odontogenic differentiation bothin vivo and in vitro. Sirt4 knockdown resulted in reduced odontogenic differentiation and mineralization, whereas an opposite effect was observed with SIRT4 overexpression. Furthermore, our results verified that in addition to reducing DPC differentiation, Sirt4 knockdown could also significantly reduce ATP levels, elevate the NAD+/NADH ratio, and increase ROS levels. CONCLUSION SIRT4 regulates mitochondrial functions and the antioxidant capacity of DPCs, thereby influencing dentin formation and tooth development, a phenomenon that may provide a foundation for better understanding the specific molecular mechanisms underlying dentin regeneration.
Collapse
Affiliation(s)
- Haoling Chen
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jun Kang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fuping Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
6
|
Kang J, Chen H, Zhang F, Yan T, Fan W, Jiang L, He H, Huang F. RORα Regulates Odontoblastic Differentiation and Mediates the Pro-Odontogenic Effect of Melatonin on Dental Papilla Cells. Molecules 2021; 26:1098. [PMID: 33669807 PMCID: PMC7922395 DOI: 10.3390/molecules26041098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.
Collapse
Affiliation(s)
- Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Haoling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fuping Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Tong Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Liulin Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
7
|
Comparison of 2- and 3-Dimensional Cultured Periodontal Ligament Stem Cells; a Pilot Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study compared the characteristics of periodontal ligament stem cells (PDLSCs) cultured using 3-dimensional (3D) versus conventional 2-dimensional (2D) methods. PDLSCs were cultured in either a 3D culture with a non-adhesive culture plate (Stemfit 3D®) or a conventional 2D culture using a 6-well plate. Morphology, viability, proliferation ability, and osteogenic differentiation were analyzed to characterize the differences induced in identical PDLSCs by 3D and 2D culture environments. In addition, gene expression was analyzed using RNA sequencing to further characterize the functional differences. The diameter and the viability of the 3D-cultured PDLSCs decreased over time, but the shape of the spheroid was maintained for 20 days. Although osteogenic differentiation occurred in both the 2D- and 3D-cultured PDLSCs, compared to the control group it was 20.8 and 1.6 higher in the 3D- and 2D-cultured cells, respectively. RNA sequencing revealed that PDLSCs cultured using 2D and 3D methods have different gene expression profiles. The viability of the 3D-cultured cells was decreased, but they showed superior osteogenic differentiation compared to 2D-cultured cells. Within the limitations of this study, the results demonstrate that the structure and function of PDLSCs are influenced by the cell culture method.
Collapse
|
8
|
Chen Z, Xie H, Yuan J, Lan Y, Xie Z. Krüppel-like factor 6 promotes odontoblastic differentiation through regulating the expression of dentine sialophosphoprotein and dentine matrix protein 1 genes. Int Endod J 2021; 54:572-584. [PMID: 33200415 DOI: 10.1111/iej.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate the potential role of Krüppel-like factor 6 (KLF6) in the odontoblastic differentiation of immortalized dental papilla mesenchymal cells (iMDP-3) cells. METHODOLOGY Alizarin Red S (ARS) and Alkaline phosphatase (ALP) staining was used to examine the mineralization effect of iMDP-3 cells after odontoblastic induction. Real-time PCR and Western blotting were employed to analyse dentine sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP1), RUNX family transcription factor 2 (RUNX2), ALP and KLF6 expression during this process. Co-expression of the KLF6 with DMP1, DSPP and RUNX2 was detected by double immunofluorescence staining to explore their local relationship in the cell. To further investigate KLF6 functions, Klf6 gain- and loss-of-function assays followed by ARS and ALP stainings, real-time PCR and Western blotting were performed using Klf6-overexpression plasmids and Klf6 siRNA to investigate whether changes in Klf6 expression affect the odontoblastic differentiation of iMDP-3 cells. Dual-luciferase reporter assays were used to elucidate the mechanistic regulation of Dspp and Dmp1 expression by Klf6. Means were compared using the unpaired t-test and Kruskal-Wallis one-way anova with P < 0.05 and P < 0.01 defined as statistical significance levels. RESULTS The expression levels of Klf6 (P < 0.01), Dspp (P < 0.05), Dmp1 (P < 0.01), Runx2 (P < 0.01) and Alp (P < 0.01) were significantly elevated during odontoblastic differentiation of iMDP-3 cells. KLF6 was co-localized with DSPP, DMP1 and RUNX2 in the cytoplasm and nucleus of iMDP-3 cells. Overexpression of Klf6 promoted the odontoblastic differentiation of iMDP-3, whereas the inhibition of Klf6 prevented this procession. Dual-luciferase assays revealed that Klf6 upregulates Dspp and Dmp1 transcription in iMDP-3 cells during odontoblastic differentiation. CONCLUSION Klf6 promoted odontoblastic differentiation by targeting the transcription promoter of Dmp1 and Dspp. This study may offer novel insights into strategies for treating injuries to dental pulp tissue.
Collapse
Affiliation(s)
- Z Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - H Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - J Yuan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Y Lan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Z Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Ahmed GM, Abouauf EA, AbuBakr N, Elarab AE, Fawzy El-Sayed K. Stem Cell-Based Tissue Engineering for Functional Enamel and Dentin/Pulp Complex: A Potential Alternative to the Restorative Therapies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Lyu Y, Jia S, Wang S, Wang T, Tian W, Chen G. Gestational diabetes mellitus affects odontoblastic differentiation of dental papilla cells via Toll‐like receptor 4 signaling in offspring. J Cell Physiol 2019; 235:3519-3528. [PMID: 31595494 DOI: 10.1002/jcp.29240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yun Lyu
- Department of Human Anatomy, School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Sixun Jia
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Shikang Wang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Weidong Tian
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Guoqing Chen
- Department of Human Anatomy, School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
11
|
Zhang S, Buttler-Buecher P, Denecke B, Arana-Chavez VE, Apel C. A comprehensive analysis of human dental pulp cell spheroids in a three-dimensional pellet culture system. Arch Oral Biol 2018; 91:1-8. [PMID: 29621667 DOI: 10.1016/j.archoralbio.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/20/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Three-dimensional (3D) cell culture methods are of high importance to studies of biological processes. This is particularly the case with spheroid cultures, which create 3D cell aggregates without the use of exogenous materials. Compared to conventional monolayer cultures, cellular spheroid cultures have been demonstrated to improve multilineage potential and extracellular matrix production. To address this issue in depth, we present a more comprehensive analysis of 3D human dental pulp cell (hDPC) spheroids. DESIGN hDPC spheroids were fabricated by the pellet culture method and were cultured without adding any reagent to induce differentiation. The gene-expression profiles of the 3D and two-dimensional (2D) cultured hDPCs were compared by complementary DNA microarray analysis. Odontoblastic and osteoblastic differentiation marker gene expression was evaluated by quantitative real-time PCR (RT-qPCR). Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to examine the morphology of hDPC spheroids and extracellular matrix components. RESULTS Compared with 2D monolayer culture, microarray analysis identified 405 genes and 279 genes with twofold or greater differential expression after 3 days and 28 days of 3D culture, respectively. In 3D hDPC spheroids, gene ontology analysis revealed upregulation of extracellular matrix-related genes and downregulation of cell growth-related genes. RT-qPCR analysis showed higher expression levels of osteocalcin, dentin sialophosphoprotein, and alkaline phosphatase. TEM revealed the morphological characteristics of the fibrillar collagen-rich matrix and cell-cell interactions. CONCLUSIONS The present findings provide clues to understanding the mechanisms of pellet-cultured hDPCs and contribute to future research in the comparative studies of different 3D culture methods.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, Helmholtz-Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Patricia Buttler-Buecher
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Victor E Arana-Chavez
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Brazil
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, Helmholtz-Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Zhang F, Jiang L, He Y, Fan W, Guan X, Deng Q, Huang F, He H. Changes of mitochondrial respiratory function during odontogenic differentiation of rat dental papilla cells. J Mol Histol 2017; 49:51-61. [PMID: 29189956 DOI: 10.1007/s10735-017-9746-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/23/2017] [Indexed: 01/09/2023]
Abstract
Dental papilla cells (DPCs) belong to precursor cells differentiating to odontoblasts and play an important role in dentin formation and reproduction. This study aimed to explore the changes and and involvement of mitochondrial respiratory function during odontogenic differentiation. Primary DPCs were obtained from first molar dental papilla of neonatal rats and cultured in odontogenic medium for 7, 14, 21 days. DPCs, which expressed mesenchymal surface markers CD29, CD44 and CD90, had the capacity for self-renewal and multipotent differentiation. Odontoblastic induction increased mineralized matrix formation in a time-dependent manner, which was accompanied by elevated alkaline phosphatase (ALP), dentin sialophosphoprotein and dentin matrix protein 1 expression at mRNA and protein levels. Notably, odontogenic medium led to an increase in adenosine-5'-triphosphate content and mitochondrial membrane potential, whereas a decrease in intercellular reactive oxygen species production and NAD+/NADH ratio. Furthermore, odontogenic differentiation was significantly suppressed by treatment with rotenone, an inhibitor of mitochondrial respiratory chain. These results demonstrate that enhanced mitochondrial function is crucial for odontogenic differentiation of DPCs.
Collapse
Affiliation(s)
- Fuping Zhang
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Liulin Jiang
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yifan He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoyan Guan
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qianyi Deng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
13
|
Mizumachi H, Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Yuda A, Sugii H, Serita S, Mitarai H, Koori K, Wada N, Maeda H. Calcium-sensing receptor-ERK signaling promotes odontoblastic differentiation of human dental pulp cells. Bone 2017; 101:191-201. [PMID: 28506888 DOI: 10.1016/j.bone.2017.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/09/2023]
Abstract
Activation of the G protein-coupled calcium-sensing receptor (CaSR) has crucial roles in skeletal development and bone turnover. Our recent study has identified a role for activated CaSR in the osteogenic differentiation of human periodontal ligament stem cells. Furthermore, odontoblasts residing inside the tooth pulp chamber play a central role in dentin formation. However, it remains unclear how CaSR activation affects the odontoblastic differentiation of human dental pulp cells (HDPCs). We have investigated the odontoblastic differentiation of HDPCs exposed to elevated levels of extracellular calcium (Ca) and strontium (Sr), and the contribution of CaSR and the L-type voltage-dependent calcium channel (L-VDCC) to this process. Immunochemical staining of rat dental pulp tissue demonstrated that CaSR was expressed at high levels in the odontoblastic layer, moderate levels in the sublayer, and low levels in the central pulp tissue. Although normal HDPCs expressed low levels of CaSR, stimulation with Ca or Sr promoted both CaSR expression and odontoblastic differentiation of HDPCs along with increased expression of odontoblastic makers. These effects were inhibited by treatment with a CaSR antagonist, whereas treatment with an L-VDCC inhibitor had no effect. Additionally, knockdown of CaSR with siRNA suppressed odontoblastic differentiation of Ca- and Sr-treated HDPCs. ERK1/2 phosphorylation was observed in Ca- and Sr-treated HDPCs, whereas CaSR antagonist treatment or CaSR knockdown blocked ERK1/2 phosphorylation. Furthermore, inhibition of ERK1/2 suppressed mineralization of Ca- and Sr-treated HDPCs. These results suggest that elevated concentrations of extracellular Ca and Sr induce odontoblastic differentiation of HDPCs through CaSR activation and the ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Hiroyuki Mizumachi
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshida
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Asuka Yuda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Suguru Serita
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiromi Mitarai
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Katsuaki Koori
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Chen Y, Liu H. The differentiation potential of gingival mesenchymal stem cells induced by apical tooth germ cell‑conditioned medium. Mol Med Rep 2016; 14:3565-72. [PMID: 27600358 PMCID: PMC5042793 DOI: 10.3892/mmr.2016.5726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) have recently been harvested; however, the use of GMSCs in periodontal tissue engineering requires further study. The present study established an indirect co‑culture system between rat apical tooth germ‑conditioned medium (APTG‑CM) and GMSCs, in order to determine the effects on periodontal tissue differentiation in vitro and in vivo. Using the limiting dilution technique, single‑colony derived human GMSCs and periodontal ligament stem cells (PDLSCs) were isolated and expanded to obtain homogeneous populations. PDLSCs were used as a positive control group. Cell cycle distribution, alkaline phosphatase (ALP) activity, mineralization behavior, expression of genes associated with a cementoblast phenotype (osteocalcin, bone sialoprotein, ALP, type I collagen, cementum‑derived protein 23), and in vivo differentiation capacities of GMSCs/PDLSCs co‑cultured with APTG‑CM were evaluated. Flow cytometry indicated that GMSCs and PDLSCs were positive for STRO‑1 and CD105, whereas CD45 expression was negative. The cell types were capable of forming colonies, and of osteogenic and adipogenic differentiation in response to appropriate stimuli. The induced GMSCs and PDLSCs exhibited numerous characteristics associated with cementoblast lineages, as indicated by increased proliferation and ALP activity, and upregulated expression of cementum‑associated genes in vitro. In vivo, cementum/periodontal ligament‑like structures were shown to form along the dentin surface and ceramic bovine bone in GMSCs and PDLSCs induced by APTG‑CM group. Conversely, vertical fibers could not insert in the control group, which was not co‑cultured with APTG‑CM. In conclusion, GMSCs are likely to have a role in periodontal tissue regeneration. In addition, APTG‑CM was able to provide a cementogenic microenvironment and promote differentiation of GMSCs along the cementoblastic lineage.
Collapse
Affiliation(s)
- Yan Chen
- Department of Periodontology, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| | - Hongwei Liu
- Department of Periodontology, Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
15
|
Nakatsuka R, Matsuoka Y, Uemura Y, Sumide K, Iwaki R, Takahashi M, Fujioka T, Sasaki Y, Sonoda Y. Mouse Dental Pulp Stem Cells Support Human Umbilical Cord Blood-Derived Hematopoietic Stem/Progenitor Cells in Vitro. Cell Transplant 2015; 24:97-113. [DOI: 10.3727/096368913x674675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well documented that specialized mesenchymal stem/stromal cells (MSCs) constitute the hematopoietic stem cell (HSC) niche in the bone marrow (BM), and these MSCs support/maintain the HSCs in an undifferentiated state. A number of studies have demonstrated that BM-derived MSCs (BM-MSCs) can support HSCs in vitro. However, it remains unclear whether nonhematopoietic tissue-derived MSC-like cells, such as dental pulp stem cells (DPSCs), have the ability to support HSCs. In this study, we prospectively isolated DPSCs from mouse mandibular incisors by fluorescence-activated cell sorting (FACS) using BM-MSC markers, such as PDGFRα and Sca-1. The PDGFRα and Sca-1 double-positive DPSCs and BM-MSCs showed similar morphologies and expression patterns of MSC markers. The ability of the DPSCs to support hematopoietic stem/progenitor cells (HSPCs) was then analyzed by an in vitro coculture system. Moreover, their HSC-supporting activity was evaluated by in vivo xenotransplantation assays using NOD/Shi-scid/IL-2Rγcnull (NOG) mice. Interestingly, the DPSCs supported human cord blood (CB)-derived CD34-positive (CD34+), as well as CD34-negative (CD34–), HSCs. The supporting activities of DPSCs for human CB-derived CD34+ and CD34– HSCs were comparable to those of BM-MSCs. The results of the present study demonstrated, for the first time, that prospectively isolated murine PDGFRα and Sca-1 double-positive DPSCs could support primitive human CD34+ and CD34– HSCs in vitro.
Collapse
Affiliation(s)
- Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ryuji Iwaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaya Takahashi
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Sasaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
16
|
Yang G, Li X, Yuan G, Liu P, Fan M. The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells. J Endod 2014; 40:1771-7. [PMID: 25258338 DOI: 10.1016/j.joen.2014.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Dental papilla cells (DPCs) are precursors of odontoblasts and have the potential to differentiate into odontoblasts. Osteoblasts and odontoblasts have many common characteristics. Osterix (Osx) is essential for osteoblast differentiation. However, no information is available for the effects of Osx on the odontoblastic differentiation of DPCs. The purpose of this study was to investigate the effects of Osx on the proliferation and odontoblastic differentiation of DPCs. METHODS An immortalized human dental papilla cell (hDPC) line was used. Osx was stably overexpressed or knocked down in hDPCs with infection of lentiviral particles to determine its biological effects on hDPCs. The proliferation of cells was measured by the 5-ethynyl-2'-deoxyuridine incorporation assay and direct cell counting. Expressions of dentin sialophosphoprotein, nestin, dentin matrix protein 1, and alkaline phosphatase were detected by real-time polymerase chain reaction to determine the odontoblastic differentiation of cells. The mineralization ability of cells was evaluated by von Kossa staining and alkaline phosphatase activity assay. RESULTS Overexpression of Osx retarded the proliferation of hDPCs, whereas knockdown of Osx increased the cell proliferation. Overexpression of Osx promoted the odontoblastic differentiation of hDPCs by up-regulating odontoblastic differentiation genes and increased the mineralization ability of hDPCs. Knockdown of Osx down-regulated odontoblastic differentiation genes and decreased the mineralization ability of hDPCs. CONCLUSIONS Osx might function as a potential regulator for the proliferation and odontoblastic differentiation of hDPCs.
Collapse
Affiliation(s)
- Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan; Department of Endodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Pingxian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan.
| |
Collapse
|
17
|
Lymperi S, Ligoudistianou C, Taraslia V, Kontakiotis E, Anastasiadou E. Dental Stem Cells and their Applications in Dental Tissue Engineering. Open Dent J 2013; 7:76-81. [PMID: 24009647 PMCID: PMC3750972 DOI: 10.2174/1874210601307010076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/09/2023] Open
Abstract
Tooth loss or absence is a common condition that can be caused by various pathological circumstances. The replacement of the missing tooth is important for medical and aesthetic reasons. Recently, scientists focus on tooth tissue engineering, as a potential treatment, beyond the existing prosthetic methods. Tooth engineering is a promising new therapeutic approach that seeks to replace the missing tooth with a bioengineered one or to restore the damaged dental tissue. Its main tool is the stem cells that are seeded on the surface of biomaterials (scaffolds), in order to create a biocomplex. Several populations of mesenchymal stem cells are found in the tooth. These different cell types are categorized according to their location in the tooth and they demonstrate slightly different features. It appears that the dental stem cells isolated from the dental pulp and the periodontal ligament are the most powerful cells for tooth engineering. Additional research needs to be performed in order to address the problem of finding a suitable source of epithelial stem cells, which are important for the regeneration of the enamel. Nevertheless, the results of the existing studies are encouraging and strongly support the belief that tooth engineering can offer hope to people suffering from dental problems or tooth loss.
Collapse
Affiliation(s)
- S Lymperi
- Department of Endodontics, Dental School, University of Athens, Greece ; Department of Genetics and Gene Therapy, Biomedical Research Foundation of Academy of Athens, Greece
| | | | | | | | | |
Collapse
|
18
|
Establishment of odontoblastic cells, which indicate odontoblast features bothin vivoandin vitro. J Oral Pathol Med 2013; 42:799-806. [DOI: 10.1111/jop.12080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 01/08/2023]
|
19
|
Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 2013; 8:e62332. [PMID: 23620822 PMCID: PMC3631153 DOI: 10.1371/journal.pone.0062332] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/20/2013] [Indexed: 02/05/2023] Open
Abstract
Classical tooth development theory suggests that dental papilla cells (DPCs) are the precursor cells of odontoblasts, which are responsible for dentin development. However, our previous studies have indicated that dental follicle cells (DFCs) can differentiate into odontoblasts. To further our understanding of tooth development, and the differences in dentinogenesis between DFCs and DPCs, the odontogenic differentiation of DFCs and DPCs was characterized in vitro and in vivo. DFCs and DPCs were individually combined with treated dentin matrix (TDM) before they were subcutaneously implanted into the dorsum of mice for 8 weeks. Results showed that 12 proteins were significantly differential, and phosphoserine aminotransferase 1 (PSAT1), Isoform 2 of hypoxia-inducible factor 1-alpha (HIF1A) and Isoform 1 of annexin A2 (ANXA2), were the most significantly differential proteins. These proteins are related to regulation of bone balance, angiogenesis and cell survival in an anoxic environment. Both DFCs and DPCs express odontogenic, neurogenic and peridontogenic markers. Histological examination of the harvested grafts showed that both DFCs and DPCs form pulp-dentin/cementum-periodentium-like tissues in vivo. Hence, DFCs and DPCs have similar odontogenic differentiation potential in the presence of TDM. However, differences in glucose and amino acid metabolism signal transduction and protein synthesis were observed for the two cell types. This study expands our understanding on tooth development, and provides direct evidence for the use of alternative cell sources in tooth regeneration.
Collapse
Affiliation(s)
- Lijuan Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Xiangchen Qiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
- * E-mail: (WG); (WT)
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
- * E-mail: (WG); (WT)
| |
Collapse
|
20
|
Na S, Zhang H, Huang F, Wang W, Ding Y, Li D, Jin Y. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 2013; 10:261-70. [PMID: 23365018 DOI: 10.1002/term.1686] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/13/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease.
Collapse
Affiliation(s)
- Sijia Na
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Hao Zhang
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Weiqi Wang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yin Ding
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dechao Li
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yan Jin
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
21
|
Dental stem cells for craniofacial tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:728-33. [DOI: 10.1016/j.tripleo.2011.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/19/2011] [Indexed: 12/16/2022]
|
22
|
Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, Tsui YY, El-Bialy T. Long term effect of low intensity pulsed ultrasound on a human tooth slice organ culture. Arch Oral Biol 2011; 57:760-8. [PMID: 22138259 DOI: 10.1016/j.archoralbio.2011.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Investigate the effect of therapeutic Low Intensity Pulsed Ultrasound (LIPUS) on human dentine-pulp complex in an in vitro model. DESIGN 92 premolars were extracted from 23 adolescent orthodontic patients. The premolars were sectioned transversely into 600 μm thick slices. The slices were divided into two main groups according to how often the LIPUS was applied (single or daily application), and then subdivided into five subgroups each (5, 10, 15 and 20 min and one control group). The tooth slices were cultured at (37 °C/5% CO(2)) in a humidified incubator where medium was changed every 48 h. LIPUS was applied using a 3.9 cm(2) transducer that produces an incident intensity of 30 mW/cm(2). After five days, tissue was harvested for histomorphometrical analysis and real time PCR to investigate expression of genes of interest (Collagen I, DMP1, DSPP, TGF-β1, RANKL and OPG). RESULTS Histomorphometric analyses revealed that odontoblast cell count was higher in the single application groups (5, 10 and 15 min, respectively) than in the control and other treatment groups. Predentin thickness was higher in the single application group (10, 5 and 15 min) respectively than in the daily application group and the control groups, however they were not significantly different from each other. Real time PCR demonstrated no statistically significant difference between the groups in the expression of Collagen I, DMP1, TGF-β1, DSPP, RANKL and OPG. CONCLUSION Reproducible responses from cultured dentine-pulp complex were observed in groups with single application of LIPUS for 5, 10 and 15 min.
Collapse
Affiliation(s)
- Saleh Al-Daghreer
- University of Alberta, Department of Dentistry, Faculty of Medicine and Dentistry, Room 4051, Dentistry/Pharmacy Centre, Edmonton, AB Canada T6G 2N8.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferro F, Spelat R, Falini G, Gallelli A, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Beltrami CA, Ambesi-Impiombato FS, Curcio F. Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2299-310. [PMID: 21514442 PMCID: PMC3081158 DOI: 10.1016/j.ajpath.2011.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 01/09/2023]
Abstract
Tooth morphogenesis requires sequential and reciprocal interactions between the cranial neural crest-derived mesenchymal cells and the stomadial epithelium, which regulate tooth morphogenesis and differentiation. We show how mesenchyme-derived single stem cell populations can be induced to transdifferentiate in vitro in a structure similar to a dental bud. The presence of stem cells in the adipose tissue has been previously reported. We incubated primary cultures of human adipose tissue-derived stem cells in a dental-inducing medium and cultured the aggregates in three-dimensional conditions. Four weeks later, cells formed a three-dimensional organized structure similar to a dental bud. Expression of dental tissue-related markers was tested assaying lineage-specific mRNA and proteins by RT-PCR, immunoblot, IHC, and physical-chemical analysis. In the induction medium, cells were positive for ameloblastic and odontoblastic markers as both mRNAs and proteins. Also, cells expressed epithelial, mesenchymal, and basement membrane markers with a positional relationship similar to the physiologic dental morphogenesis. Physical-chemical analysis revealed 200-nm and 50-nm oriented hydroxyapatite crystals as displayed in vivo by enamel and dentin, respectively. In conclusion, we show that adipose tissue-derived stem cells in vitro can transdifferentiate to produce a specific three-dimensional organization and phenotype resembling a dental bud even in the absence of structural matrix or scaffold to guide the developmental process.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Renza Spelat
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Giuseppe Falini
- Department of Chemistry “G. Ciamican,” Alma Mater Studiorum University of Bologna, via Selmi, Bologna, Italy
| | | | | | - Elisa Puppato
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | - Maura Pandolfi
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | - Daniela Cesselli
- Centre of Regenerative Medicine, University of Udine, Udine, Italy
| | | | | | - Francesco Curcio
- Department of Pathology and Experimental and Clinical Medicine, University of Udine, Udine, Italy
| |
Collapse
|
24
|
Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 2010; 11:32. [PMID: 20459680 PMCID: PMC2877667 DOI: 10.1186/1471-2121-11-32] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/08/2010] [Indexed: 12/13/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. Results DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. Conclusions These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.
Collapse
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K, Sonoda Y. 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol 2010; 55:350-7. [PMID: 20362276 DOI: 10.1016/j.archoralbio.2010.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 03/03/2010] [Accepted: 03/06/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Tissue stem cells in dental pulp are assumed to possess differentiation potentials similar to mesenchymal stem cells (MSCs). The aim of this in vitro study is to examine the differentiation potentials of mouse dental pulp stem cells (DPSCs) and develop the appropriate differentiation assay systems for skeletal myogenic differentiation of these cells. METHODS Dental pulps were extracted from mandible sections of C57/BL6 mice, and adherent dental pulp cells were isolated in culture. These cells were cultured in osteogenic or adipogenic induction medium to induce osteogenic and adipogenic differentiation. On the other hand, the skeletal myogenic differentiation potential of these cells was investigated using different conditions, such as serum-free medium, Myod1 overexpression, or 5-Aza-2'-deoxycytidine (5-Aza) treatment for DNA demethylation. Muscle-specific transcriptional factor expression was evaluated by RT-PCR, and myotube formation and myosin heavy chain expression were evaluated by phase-contrast microscopy and immunofluorescence staining, respectively. RESULTS The adherent dental pulp cells exhibited a proliferative capacity and they showed osteogenic and adipogenic differentiation as seen in previous studies. Although the expression of Myod1 mRNA and myotube formation was not detected in serum-free conditions, the forced expression of Myod1 up-regulated the expression of Myogenin and Pax7 mRNA. However, myotube formation was not confirmed. Interestingly, myosin heavy chain expression and myotube formation were observed following 5-Aza treatment of these cells. CONCLUSIONS These results demonstrated that mouse DPSCs possess MSC-like differentiation potential. DNA demethylation induced by 5-Aza treatment resulted in the skeletal muscle differentiation in mouse DPSCs, suggesting that DNA demethylation might trigger this differential induction of mouse DPSCs.
Collapse
Affiliation(s)
- Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang Z, Jin F, Zhang X, Ma D, Han C, Huo N, Wang Y, Zhang Y, Lin Z, Jin Y. Tissue engineering of cementum/periodontal-ligament complex using a novel three-dimensional pellet cultivation system for human periodontal ligament stem cells. Tissue Eng Part C Methods 2010; 15:571-81. [PMID: 19534606 DOI: 10.1089/ten.tec.2008.0561] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Limitations of conventional regeneration modalities underscore the necessity of recapitulating development for periodontal tissue engineering. In this study, we proposed a novel three-dimensional pellet cultivation system for periodontal ligament stem cells (PDLSCs) to recreate the biological microenvironment similar to those of a regenerative milieu. Monodispersed human PDLSCs were cultured in medium with ascorbic acid and conditioned medium from developing apical tooth germ cells and were subsequently harvested from culture plate as a contiguous cell sheet with abundant extracellular matrix. The detached cell-matrix membrane spontaneously contracted to produce a single-cell pellet. The PDLSCs embedded within this cell-matrix complex exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated alkaline phosphatase activity, accelerated mineralization, and the expression of bone sialoprotein and osteocalcin genes. When this PDLSC pellets were transplanted into immunocompromised mice, a regular aligned cementum/PDL-like complex was formed. These results suggest that the combination of apical tooth germ cell-conditioned medium and endogenous extracellular matrix could maximally mimic the microenvironment of root/periodontal tissue development and enhance the reconstruction of physiological architecture of a cementum/PDL-like complex in a tissue-mimicking way; on the other hand, such PDLSC pellet may also be a promising alternative to promote periodontal defect repair for future clinical applications.
Collapse
Affiliation(s)
- Zhenhua Yang
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hepatocyte Growth Factor Exerts Promoting Functions on Murine Dental Papilla Cells. J Endod 2009; 35:382-8. [DOI: 10.1016/j.joen.2008.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/22/2022]
|
28
|
Immunohistochemical expression of matrix metalloproteinases 1, 2, and 9 in odontogenic myxoma and dental germ papilla. Pathol Res Pract 2009; 205:458-65. [PMID: 19243899 DOI: 10.1016/j.prp.2009.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/31/2008] [Accepted: 01/16/2009] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the immunohistochemical expression of matrix metalloproteinases (MMPs) 1, 2, and 9 in odontogenic myxomas and dental germ papillae. Twelve cases of odontogenic myxoma and eight tooth germ specimens were selected for analysis of the immunohistochemical expression and the pattern of distribution of MMPs 1, 2, and 9 in extracellular matrix (ECM), as well as of the number of MMP-positive cells. MMP-2 was expressed only in the ECM of myxomas (p<0.05). No significant difference was observed between ECM immunoreactivity for MMP-9 in myxomas and dental papillae (p>0.05). MMP-1 immunoreactivity was detected in most myxoma cases at a proportion similar to that observed in dental papillae (p>0.05). A significant difference was observed in the number of immunoreactive cells in myxomas (p<0.05), MMP-1 being present at higher proportions than MMPs 2 and 9. There was a gradient in the expression of MMPs in the ECM and in neoplastic cells of odontogenic myxomas, with higher immunoreactivity to MMP-1 and lower immunoreactivity to MMP-9. Taken together, our results suggest the existence of a coordinated mechanism between MMPs 1, 2, and 9 that aimed at the efficient degradation of extracellular matrix in odontogenic myxomas.
Collapse
|
29
|
Zhao Z, Tang L, Deng Z, Wen L, Jin Y. Essential role of ADAM28 in regulating the proliferation and differentiation of human dental papilla mesenchymal cells (hDPMCs). Histochem Cell Biol 2008; 130:1015-25. [PMID: 18690470 DOI: 10.1007/s00418-008-0467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2008] [Indexed: 12/23/2022]
Abstract
Dental papilla mesenchymal cells (DPMCs) have been supposed to possess the relatively independent and critical role for tooth development and morphogenesis. Here, we characterized the role of ADAM28, a member of a disintegrin and metalloproteinase (ADAM) family, in the regulative mechanisms of odontogenic capability of hDPMCs. Immunofluorescence staining showed the ubiquitous expression of ADAM28 in multiple human dental mesenchymal and epithelial cells. After confirming the effect of eukaryotic expression plasmid containing ADAM28 coding region and ADAM28 antisense oligodeoxynucleotide (AS-ODN), we respectively transfected them into hDPMCs and observed the biological markers for proliferation and differentiation. Overexpression of ADAM28 favored the proliferation and lineage-specific differentiation of hDPMCs, while blockage of ADAM28 exerted the opposite effects and induced apoptosis. These results identified an unrecognized hypothesis that ADAM28 may function as positive regulator of growth and differentiation of hDPMCs and act as an important molecule mediating reciprocal epithelial-mesenchymal signaling during tooth organ development.
Collapse
Affiliation(s)
- Zheng Zhao
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, and Department of Otolaryngology, Xijing Hospital, 145 West Changle Road, 710032, Xi'an, China
| | | | | | | | | |
Collapse
|
30
|
Hargreaves KM, Geisler T, Henry M, Wang Y. Regeneration Potential of the Young Permanent Tooth: What Does the Future Hold? J Endod 2008; 34:S51-6. [DOI: 10.1016/j.joen.2008.02.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of Dental Pulp Stem Cells into Regular-Shaped Dentin-Pulp Complex Induced by Tooth Germ Cell Conditioned Medium. ACTA ACUST UNITED AC 2006; 12:3097-105. [PMID: 17518625 DOI: 10.1089/ten.2006.12.3097] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations of the odontoblast phenotype are hindered by obstacles such as the limited number of odontoblasts within the dental pulp and the difficulty in purification of these cells. Therefore, it is necessary to develop a cell culture system in which the local environment is inductive and can promote dental pulp stem cells (DPSCs) to differentiate into odontoblast lineage. In this study, we investigated the effect of conditioned medium from developing tooth germ cells (TGCs) on the differentiation and dentinogenesis of DPSCs both in vitro and in vivo. DPSCs were enzymatically isolated from the lower incisors of 4-week-old Sprague-Dawley rats and co-cultured with TGC conditioned medium (TGC-CM). The cell phenotype of induced DPSCs presents many features of odontoblasts, as assessed by the morphologic appearance, cell cycle modification, increased alkaline phosphatase level, synthesis of dentin sialoprotein, type I collagen and several other noncollagenous proteins, expression of the dentin sialophosphoprotein and dentin matrix protein 1 genes, and the formation of mineralized nodules in vitro. The induced DPSC pellets in vivo generated a regular-shaped dentin-pulp complex containing distinct dentinal tubules and predentin, while untreated pellets spontaneously differentiated into bone-like tissues. To our knowledge, this is the first study to mimic the dentinogenic microenvironment from TGCs in vitro, and our data suggest that TGC-CM creates the most odontogenic microenvironment, a feature essential and effective for the regular dentinogenesis mediated by DPSCs.
Collapse
Affiliation(s)
- Jinhua Yu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pang JL, Wu BL, He WX, Zhang YQ, Zhao HP, Xie ZH. Effect of antisense oligonucleotide against mouse dentine matrix protein 1 on mineralization ability and calcium ions metabolism in odontoblast-like cell line MDPC-23. Int Endod J 2006; 39:527-37. [PMID: 16776757 DOI: 10.1111/j.1365-2591.2006.01104.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To study the mineralization ability and the dynamic changes of intracellular and extracellular concentrations of calcium ions in the odontoblast-like cell line MDPC-23 affected by antisense oligonucleotide (AS-ODN) against mouse dentine matrix protein 1 (DMP1). METHODOLOGY The expression of DMP1 in MDPC-23 cells was detected by an immunohistochemical method and its blocking outcome by the Western blot method. The alkaline phosphatase (ALP) activity, size and number of mineralized nodules, and the intracellular free ([Ca2+]if), total ([Ca2+]it) and the extracellular ([Ca2+]e) calcium ion concentrations in MDPC-23 cells in the experimental group affected with AS-ODN were compared with those in the control group (paired-samples t-test). RESULTS Dentine matrix protein 1 was stably expressed in a stable way in MDPC-23 cells; the expression was only just detectable at 12 h and became negative after 24 h affected by AS-ODN. Compared with the control groups, ALP activity of MDPC-23 cells in the AS-ODN group was decreased (P < 0.05), and both the number and size of mineralized nodules were smaller than those in the control group. [Ca2+]if in the AS-ODN group increased and then decreased after 24 h. [Ca2+]it dropped substantially to the lowest point at 24 h (P < 0.01). [Ca2+]e increased before treatment for 24 h and then dropped, however, it was still higher than that of the control group. CONCLUSIONS Antisense oligonucleotide against DMP1 could decrease mineralization ability and affect the intracellular and extracellular concentrations of calcium ions in MDPC-23 cells. This would indicate that DMP1 regulates the metabolism and transportation of calcium ions in odontoblasts, and thus boosts dentine mineralization.
Collapse
Affiliation(s)
- J L Pang
- Department of Operative Dentistry and Endodontics, Qindu Stomatological Hospital, The Fourth Military Medical University, Xi'an City, China
| | | | | | | | | | | |
Collapse
|
33
|
Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006; 346:116-24. [PMID: 16750168 DOI: 10.1016/j.bbrc.2006.05.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/14/2006] [Indexed: 11/23/2022]
Abstract
We isolated dental papilla mesenchymal cells (DPMCs) from different rat incisor germs at the late bell stage and incubated them as cell pellets in polypropylene tubes. In vitro pellet culture of DPMCs presented several crucial characteristics of odontoblasts, as indicated by accelerated mineralization, positive immunostaining for dentin sialophosphoprotein and dentin matrix protein 1, and expression of dentin sialophosphoprotein mRNA. The allotransplantation of these pellets into renal capsules was also performed. Despite the absence of dental epithelial components, dissociated DPMCs with a complete loss of positional information rapidly underwent dentinogenesis and morphogenesis, and formed a cusp-like dentin-pulp complex containing distinctive odontoblasts, predentin, dentin, and dentinal tubules. These results imply that DPMCs at the late bell stage can reexhibit the dental morphogenesis and dentinogenesis by themselves, and epithelial-mesenchymal interactions at this stage may not be indispensable. Furthermore, different DPMC populations from the similar stage may keep the same developmental pattern.
Collapse
Affiliation(s)
- Jin-Hua Yu
- Department of Endodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | |
Collapse
|