1
|
Afarid M, Torabi-Nami M, Zare B. Neuroprotective and restorative effects of the brain-derived neurotrophic factor in retinal diseases. J Neurol Sci 2016; 363:43-50. [PMID: 27000219 DOI: 10.1016/j.jns.2016.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin proposed to be implicated in ameliorating the course of some neurodegenerative disorders. Given the fact that retina is considered as an out-pouching of the central nervous system, its related diseases have long been suggested to receive protective influence from this signaling molecule. The role of BDNF in retinal neurorestoration, neuroprotection and oxidative stress has extensively been tested over the past two decades. Nonetheless, almost the entire related literature root in animal studies and clinical research on this topic is lacking. Although much of the evidence have validated the protective properties of BDNF against various retinal cell diseases, bringing such insights into clinical context would depend on further well-designed research. The present review is an attempt to categorize and discuss the available evidence with regard to the BDNF and retinal diseases.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Department of Ophthalmology, Poostchi Eye Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Torabi-Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10:3245-67. [PMID: 25995632 PMCID: PMC4425321 DOI: 10.2147/ijn.s77480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Moscow, Russia
| | - Ganna Kocherga
- Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, Ukraine
| | - Muhamad Abu Bakar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Zhou L, Wang H, Luo J, Xiong K, Zeng L, Chen D, Huang J. Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity. Neural Regen Res 2014; 9:385-93. [PMID: 25206825 PMCID: PMC4146193 DOI: 10.4103/1673-5374.128240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 01/09/2023] Open
Abstract
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin.
Collapse
Affiliation(s)
- Lihong Zhou
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jia Luo
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Leping Zeng
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jufang Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Setting the pace for retinal development: environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. J Neurosci 2009; 29:10809-19. [PMID: 19726638 DOI: 10.1523/jneurosci.1857-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental enrichment strongly affects visual system maturation both at retinal and cortical levels. Which molecular pathways are activated by an enriched environment (EE) to regulate visual system development has not been clarified. Here, we show that early [postnatal day 1 (P1) to P7] insulin-like growth factor 1 (IGF-1) injections in the eyes of non-EE rat pups mimic EE effects both in increasing BDNF levels in the retinal ganglion cell layer at P10 and in determining a more adult-like retinal acuity, assessed with pattern electroretinogram at P25. Blocking IGF-1 action in EE animals during the same early postnatal time window by injecting the IGF-1 receptor antagonist JB1 prevents EE effects both on BDNF expression and on retinal acuity maturation. Reducing BDNF expression in the retina of IGF-1-treated rats prevents IGF-1 effects on retinal acuity development. Finally, we show that tyrosine hydroxylase (TH) expression is increased in the retina of P10 EE and IGF-1-treated rats and that blocking TH expression in EE animals prevents EE from affecting retinal acuity development. Thus, early levels of IGF-1 play a key role in mediating EE effects on retinal development through an action that requires BDNF and involves dopaminergic amacrine cell network.
Collapse
|
5
|
Choh V, Padmanabhan V, Li WSJ, Sullivan AB, Wildsoet CF. Colchicine attenuates compensation to negative but not to positive lenses in young chicks. Exp Eye Res 2007; 86:260-70. [PMID: 18078935 DOI: 10.1016/j.exer.2007.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/03/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Optic nerve-sectioned (ONS) chick eyes are capable of emmetropisation, but these eyes also exhibit increased hyperopia without any visual manipulations, which suggests altered eye growth regulation. These altered growth changes may be related to the loss of retinal ganglion cells that follows nerve lesioning. Colchicine, which also destroys retinal ganglion cells in chicks, was used to further examine the effects of retinal ganglion cell loss on emmetropisation. Growth responses of +10D and -10D lens-wearing colchicine-injected eyes were compared to those of +10D and -10D lens-wearing saline-injected eyes, respectively. Changes after removal of lenses were also analysed. Prior to lens-wear, colchicine-injected eyes exhibited longer optical axial lengths (OL; distance from cornea to retina; p=0.0185) but no differences in refractive error (RE; p=0.6588). Although myopic shifts were not significant for -10D lens-wearing colchicine-injected eyes (p=0.5913), but were for the saline-injected eyes (p=0.0034), these changes were not different (p=0.1646). However, -10D lens-induced OL changes in colchicine-injected eyes showed insignificant (p=0.2214) and reduced (p=0.0102) changes compared to those of saline-injected eyes. +10D lens-treated colchicine-injected eyes showed significant hyperopic shifts (p<0.0001) and significant reductions in OL (p<0.0001) that were similar to those of saline-injected eyes (p=0.7990 and p=0.1495, respectively). Growth responses in eyes recovering from -10D lenses were minimal, with REs unaffected (p=0.3325), but OL reductions affected (p=0.0199) by colchicine. Colchicine-injected eyes recovering from +10D lenses showed significant myopic shifts (p=0.0003) and OL elongations (p<0.0001) that were similar to those of saline-injected eyes (p=0.3999 and p=0.4731, respectively). The results showing that colchicine suppresses the ability to respond to negative lenses but leaves compensation to positive lenses relatively unchanged, are opposite to those of optic nerve sectioned eyes. We speculate that the differences are probably related to the way retinal cells are lost.
Collapse
Affiliation(s)
- Vivian Choh
- University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | |
Collapse
|
6
|
Lee EJ, Gibo TL, Grzywacz NM. Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina. Eur J Neurosci 2006; 24:2118-34. [PMID: 17074038 DOI: 10.1111/j.1460-9568.2006.05078.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important retinal neurotransmitter. We studied the expression of GABA, glutamate decarboxylase 65 (GAD65) and GAD67 by immunocytochemistry and Western blot, in the retinas of control and dark-reared C57BL/6J black mice. This study asked three questions. First, is visual input necessary for the normal expression of GABA, GAD65 and GAD67? Second, can the retina recover from the effects of dark-rearing if returned to a normal light-dark cycle? Third, does BDNF prevent the influence of dark-rearing on the expression of GABA and GAD? At postnatal day 10 (P10), before eye opening, GABA immunoreactivity was present in the ganglion cell layer (GCL), in the innermost rows of the inner nuclear layer (INL) and throughout the inner plexiform layer (IPL) of control and dark-reared retinas. In P30 control retinas, GABA immunoreactivity showed similar patterns to those at P10. However, in P30 dark-reared retinas, the density of GABA-immunoreactive cells was lower in both the INL and GCL than in control retinas. In addition, visual deprivation retarded GABA immunoreactivity in the IPL. Western blot analysis showed corresponding differences in the levels of GAD65 but not of GAD67 expression between control and dark-rearing conditions. In our study, dark-rearing effects were reversed when the mice were put in normal cyclic light-dark conditions for 2 weeks. Moreover, dark-reared retinas treated with BDNF showed normal expression of both GABA and GAD65. Our data indicate that normal expression of GABA and GAD65 is dependent on visual input. Furthermore, the data suggest that BDNF controls this dependence.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Denney Research Building 140, Los Angeles, CA 90089-1111, USA
| | | | | |
Collapse
|