1
|
Smirnov A, Guitián F, Ramirez-Rico J, Bartolomé JF. A zirconia/tantalum biocermet: in vitro and in vivo evaluation for biomedical implant applications. J Mater Chem B 2024; 12:8919-8928. [PMID: 39158622 DOI: 10.1039/d4tb01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A biocermet made of zirconia/20 vol% tantalum (3Y-TZP/Ta) is a new composite with exceptional capabilities due to a combination of properties that are rarely achieved in conventional materials (high strength and toughness, cyclic fatigue resistance and flaw tolerance, wear resistance, corrosion resistance, electrical conductivity, etc.). In this study, for the first time, the biomedical performance of a 3Y-TZP/Ta biocermet was evaluated in detail. Its in vitro biocompatibility was assessed using mesenchymal stem cell culture. The effectiveness of in vivo osteointegration of the biocermet was confirmed 6 months after implantation into the proximal tibiae of New Zealand white rabbits. In addition, the possibility of using magnetic resonance imaging (MRI) for medical analysis of the considered biocermet material was studied. The 3Y-TZP/Ta composite showed no injurious effect on cell morphology, extracellular matrix production or cell proliferation. Moreover, the implanted biocermet appeared to be capable of promoting bone growth without adverse reactions. On the other hand, this biocermet demonstrates artefact-free performance in MRI biomedical image analysis studies, making it more suitable for implant applications. These findings open up possibilities for a wide range of applications of these materials in orthopedics, dentistry and other areas such as replacement of hard tissues.
Collapse
Affiliation(s)
- Anton Smirnov
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", Moscow, Russian Federation
| | - Francisco Guitián
- Instituto de Materiales, iMATUS - USC, Santiago de Compostela, Spain
| | - Joaquín Ramirez-Rico
- Instituto de Ciencia de Materiales de Sevilla, CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Seville, Spain
- Dpto. Física de La Materia Condensada, Universidad de Sevilla, Avda. Reina Mercedes SN, 41012 Seville, Spain
| | - José F Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Assessment of Cytotoxicity of Magnesium Oxide and Magnesium Hydroxide Nanoparticles using the Electric Cell-Substrate Impedance Sensing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnesium (Mg)-based alloys have the potential for bone repair due to their properties of biodegradation, biocompatibility, and structural stability, which can eliminate the requirement for a second surgery for the removal of the implant. Nevertheless, uncontrolled degradation rate and possible cytotoxicity of the corrosion products at the implant sites are known current challenges for clinical applications. In this study, we assessed in vitro cytotoxicity of different concentrations (0 to 50 mM) of possible corrosion products in the form of magnesium oxide (MgO) and magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) in human fetal osteoblast (hFOB) 1.19 cells. We measured cell proliferation, adhesion, migration, and cytotoxicity using a real-time, label-free, non-invasive electric cell-substrate impedance sensing (ECIS) system. Our results suggest that 1 mM concentrations of MgO/Mg(OH)2 NPs are tolerable in hFOB 1.19 cells. Based on our findings, we propose the development of innovative biodegradable Mg-based alloys for further in vivo animal testing and clinical trials in orthopedics.
Collapse
|
3
|
Perni S, Yang L, Preedy EC, Prokopovich P. Cobalt and Titanium nanoparticles influence on human osteoblast mitochondrial activity and biophysical properties of their cytoskeleton. J Colloid Interface Sci 2018; 531:410-420. [PMID: 30048889 DOI: 10.1016/j.jcis.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
We investigated the biophysical effects (cell elasticity and spring constant) caused on Saos-2 human osteoblast-like cells by nanosized metal (Co and Ti) wear debris, as well as the adhesive characteristics of cells after exposure to the metal nanoparticles. Cell mitochondrial activity was investigated using the MTT assays; along with LDH assay, metal uptake, cell apoptosis and mineralisation output (alizarin red assay) of the cells. Osteoblasts mitochondrial activity was not affected by Ti nanoparticles at concentrations up to 1 mg/ml and by Cobalt nanoparticles at concentrations < 0.5 mg/ml; however elasticity and spring constant were significantly modified by the exposure to nanoparticles of these metals in agreement with the alteration of cell conformation (shape), as result of the exposure to simulated wear debris, demonstrated by fluorescence images after actin staining.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
5
|
Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, Moritz A, Spencer ND, Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater 2016; 32:1374-1384. [PMID: 27637551 DOI: 10.1016/j.dental.2016.08.217] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Titanium surface roughness is recognized as an important parameter influencing osseointegration. However, studies concerning the effect of well-defined surface topographies of titanium surfaces on osteoblasts have been limited in scope. In the present study we have investigated how Ti surfaces of different micrometer-scale roughness influence proliferation, migration, and differentiation of osteoblasts in-vitro. METHODS Titanium replicas with surface roughnesses (Ra) of approximately 0, 1, 2, and 4μm were produced and MG-63 osteoblasts were cultured on these surfaces for up to 5 days. The effect of surface micrometer-scale roughness on proliferation, migration in time-lapse microscopy experiments, as well as the expression of alkaline phosphatase, osteocalcin, vascular-endothelial growth factor (VEGF), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were investigated. RESULTS Proliferation of MG-63 cells was found to decrease gradually with increasing surface roughness. However, the highest expression of alkaline phosphatase, osteocalcin and VEGF was observed on surfaces with Ra values of approximately 1 and 2μm. Further increase in surface roughness resulted in decreased expression of all investigated parameters. The cell migration speed measured in time-lapse microscopy experiments was significantly lower on surfaces with a Ra value of about 4μm, compared to those with lower roughness. No significant effect of surface roughness on the expression of OPG and RANKL was observed. SIGNIFICANCE Thus, surfaces with intermediate Ra roughness values of 1-2μm seem to be optimal for osteoblast differentiation. Neither proliferation nor differentiation of osteoblasts appears to be supported by surfaces with higher or lower Ra values.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Rebecca Huber
- Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Bin Shi
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | | | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Nicholas D Spencer
- Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Andreas Schedle
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Ion R, Luculescu C, Cimpean A, Marx P, Gordin DM, Gloriant T. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:686-91. [DOI: 10.1016/j.msec.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/09/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
|
7
|
The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. Biomaterials 2015; 80:80-95. [PMID: 26708086 DOI: 10.1016/j.biomaterials.2015.11.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/12/2015] [Accepted: 11/29/2015] [Indexed: 12/26/2022]
Abstract
Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential.
Collapse
|
8
|
Bartolomé JF, Moya JS, Couceiro R, Gutiérrez-González CF, Guitián F, Martinez-Insua A. In vitro and in vivo evaluation of a new zirconia/niobium biocermet for hard tissue replacement. Biomaterials 2015; 76:313-20. [PMID: 26561930 DOI: 10.1016/j.biomaterials.2015.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 01/28/2023]
Abstract
Metals and ceramics are commonly used in orthopaedics, dentistry and other load bearing applications. However, the use of ceramic matrix composites reinforced with biocompatible metals for heavy load-bearing hard tissue replacement applications has not previously been reported. In order to improve the reliability and the mechanical properties of biomedical implants, new zirconia-Nb composites have been recently developed. The aim of this study was to investigate the biological tolerance of these new zirconia/Nb biocermets implants with both in vitro and in vivo approaches. At first, human bone marrow derived mesenchymal stem cells were cultured on sintered biocermet discs with polished surfaces and were compared with responses to niobium metal. In vitro, the biocermets showed no deleterious effect on cell proliferation, extra-cellular matrix production or on cell morphology. Furthermore, the biocermet showed a higher percentage of cell proliferation than Nb metal. On the other hand, the bone response to these new zirconia/Nb biocermets was studied. Cylinders of biocermets, as well as commercially Nb rod were implanted in the tibiae of New Zealand white rabbits. All the animals were euthanatized after 6 months. The specimens were processed to obtain thin ground sections. The slides were observed in normal transmitted light microscope. A newly formed bone was observed in close contact with material surfaces. No inflamed or multinucleated cells were present. This study concluded that zirconia/Nb composites are biocompatible and osteoconductive. The ceramic-metal composite has even better osteointegration ability than pure Nb. In conclusion, zirconia-Nb biocermet is suitable for heavy load-bearing hard tissue replacement from the point of view of both mechanical properties and biocompatibility.
Collapse
Affiliation(s)
- J F Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - J S Moya
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Asturias, Spain
| | - R Couceiro
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain
| | - C F Gutiérrez-González
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Asturias, Spain
| | - F Guitián
- Instituto de Cerámica de Galicia, Universidad de Santiago de Compostela (USC), Avda. Maestro Mateo, s/n. Campus Vida, 15706 Santiago de Compostela, Spain
| | - A Martinez-Insua
- Instituto de Cerámica de Galicia, Universidad de Santiago de Compostela (USC), Avda. Maestro Mateo, s/n. Campus Vida, 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Park J, Gebhardt M, Golovchenko S, Perez-Branguli F, Hattori T, Hartmann C, Zhou X, deCrombrugghe B, Stock M, Schneider H, von der Mark K. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage. Biol Open 2015; 4:608-21. [PMID: 25882555 PMCID: PMC4434812 DOI: 10.1242/bio.201411031] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate.
Collapse
Affiliation(s)
- Jung Park
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany Department of Pediatrics, Division of Molecular Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matthias Gebhardt
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Svitlana Golovchenko
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Francesc Perez-Branguli
- Junior Research Group III, Nikolaus-Fiebiger Center of Molecular Medicine, University Hospital, 91054 Erlangen, Germany
| | - Takako Hattori
- Dept. of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City,700-8525, Japan
| | - Christine Hartmann
- Dept. of Bone- and Skeletal Research, Institute of Experimental Musculoskeletal Medicine (IEMM), University Hospital Muenster, 48149 Muenster, Germany
| | - Xin Zhou
- Dept. Genetics, MDAnderson Cancer Center, Houston, TX 77030, USA
| | | | - Michael Stock
- Dept. Internal Medicine III, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, Division of Molecular Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Klaus von der Mark
- Dept. Exp. Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Yang CH, Li YC, Tsai WF, Ai CF, Huang HH. Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Clin Oral Implants Res 2013; 26:166-75. [PMID: 24313899 DOI: 10.1111/clr.12293] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The present investigation utilized a novel oxygen plasma immersion ion implantation (O-PIII) treatment to create a dense and thin oxide layer on a titanium (Ti) surface for dental implant application. MATERIALS AND METHODS This study evaluated the behavior of human bone marrow mesenchymal stem cells (hMSCs) on O-PIII-treated Ti. The O-PIII treatments were performed using different oxygen ion doses (T(L): 1 × 10(16); T(M): 4 × 10(16); T(H): 1 × 10(17) ions/cm(2)). RESULTS Analysis using an X-ray photoelectron spectrometer (XPS) and high resolution X-ray diffractometer (HR-XRD) indicated that the O-PIII-treated specimen T(M) had the highest proportion of rutile phase TiO2 component. The O-PIII-treated specimen T(M) had the greatest protein adsorption capability of the test Ti surfaces using XPS analysis and bicinchoninic acid (BCA) protein assay. Immunofluorescent staining revealed that hMSCs had the best cell adhesion on the O-PIII-treated specimen T(M), whereas green fluorescent protein (GFP)-labeled hMSCs experienced the fastest cell migration based on a wound healing assay. Other assays, including MTT assay, Alizarin red S staining and Western blot analysis, demonstrated that the adhered hMSCs exhibited the greatest cell proliferation, mineralization, and differentiation capabilities on the TM specimen. CONCLUSIONS Oxidated Ti (primarily rutile TiO2 ) was produced using a facile and rapid O-PIII treatment procedure, which enhances the biocompatibility of the Ti surface with potential implications for further dental implant application.
Collapse
Affiliation(s)
- Chih-Hsiung Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Dhayal M, Kapoor R, Sistla PG, Kant C, Pandey RR, Govind, Saini KK, Pande G. Growth, differentiation, and migration of osteoblasts on transparent Ni doped TiO2 thin films deposited on borosilicate glass. J Biomed Mater Res A 2012; 100:1168-78. [DOI: 10.1002/jbm.a.34061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/20/2011] [Accepted: 12/05/2011] [Indexed: 11/08/2022]
|
12
|
Giannelli M, Pini A, Formigli L, Bani D. Comparative in vitro study among the effects of different laser and LED irradiation protocols and conventional chlorhexidine treatment for deactivation of bacterial lipopolysaccharide adherent to titanium surface. Photomed Laser Surg 2011; 29:573-80. [PMID: 21438842 DOI: 10.1089/pho.2010.2958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE AND BACKGROUND The present in vitro study was designed to evaluate and compare the efficacy of: 1) different dental laser devices used in photoablative (PA) mode, namely commercial CO(2), Er:YAG, and Nd:YAG lasers and a prototype diode laser (wavelength = 810 nm); 2) prototype low-energy laser diode or light-emitting diode (LED) (wavelength = 630 nm), used in photodynamic (PD) mode together with the photoactivated agent methylene blue; and 3) chlorhexidine, used as reference drug, to reduce the activation of macrophages by lipopolysaccharide (LPS), a major pro-inflammatory gram-negative bacterial endotoxin, adherent to titanium surface. METHODS RAW 264-7 macrophages were cultured on titanium discs, cut from commercial dental implants and precoated with Porphyromonas gingivalis LPS. Before cell seeding, the discs were treated or not with the noted lasers and LED in PA and PD modes, or with chlorhexidine. The release of nitric oxide (NO), assumed to be a marker of macrophage inflammatory activation, in the conditioned medium was related to cell viability, evaluated by the MTS assay and ultrastructural analysis. RESULTS PA laser irradiation of the LPS-coated discs with Er:YAG, Nd:YAG, CO(2,) and diode (810 nm) significantly reduced NO production, with a maximal inhibition achieved by Nd:YAG and diode (810 nm). Similar effects were also obtained by PD treatment with diode laser and LED (630 nm) and methylene blue. Notably, both treatments were superior to chlorhexidine in terms of efficiency/toxicity ratio. CONCLUSIONS These findings suggest that laser and LED irradiation are capable of effectively reducing the inflammatory response to LPS adherent to titanium surface, a notion that may have clinical relevance.
Collapse
|
13
|
Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity. Cell Mol Biol Lett 2011; 16:279-95. [PMID: 21394446 PMCID: PMC6275969 DOI: 10.2478/s11658-011-0006-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/02/2011] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of Rho-associated kinase (ROCK) on migration and cytoskeletal organization in primary human osteoblasts and Saos-2 human osteosarcoma cells. Both cell types were exposed to two different ROCK inhibitors, Y-27632 and HA-1077. In the improved motility assay used in the present study, Y-27632 and HA-1077 significantly increased the migration of both osteoblasts and osteosarcoma cells on plastic in a dose-dependent and reversible manner. Fluorescent images showed that cells of both types cultured with Y-27632 or HA-1077 exhibited a stellate appearance, with poor assembly of stress fibers and focal contacts. Western blotting showed that ROCK inhibitors reduced myosin light chain (MLC) phosphorylation within 5 min without affecting overall myosin light-chain protein levels. Inhibition of ROCK activity is thought to enhance the migration of human osteoblasts through reorganization of the actin cytoskeleton and regulation of myosin activity. ROCK inhibitors may be potentially useful as anabolic agents to enhance the biocompatibility of bone and joint prostheses.
Collapse
|
14
|
Kapoor R, Sistla PG, Kumar JM, Raj TA, Srinivas G, Chakraborty J, Sinha MK, Basu D, Pande G. Comparative assessment of structural and biological properties of biomimetically coated hydroxyapatite on alumina (alpha-Al2O3) and titanium (Ti-6Al-4V) alloy substrates. J Biomed Mater Res A 2010; 94:913-26. [PMID: 20730928 DOI: 10.1002/jbm.a.32767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous reports have shown the use of hydroxyapatite (HAp) and related calcium phosphate coatings on metal and nonmetal substrates for preparing tissue-engineering scaffolds, especially for osteogenic differentiation. These studies have revealed that the structural properties of coated substrates are dependent significantly on the method and conditions used for coating and also whether the substrates had been modified prior to the coating. In this article, we have done a comparative evaluation of the structural features of the HAp coatings, prepared by using simulated body fluid (SBF) at 25 degrees C for various time periods, on a nonporous metal substrate titanium-aluminium-vanadium (Ti-6Al-4V) alloy and a bioinert ceramic substrate alpha-alumina (alpha-Al(2)O(3)), with and without their prior treatment with the globular protein bovine serum albumin (BSA). Our analysis of these substrates by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectrometry showed significant and consistent differences in the quantitative and qualitative properties of the coatings. Interestingly, the bioactivity of these substrates in terms of supporting in vitro cell adhesion and spreading, and in vivo effects of implanted substrates, showed a predictable pattern, thus indicating that some coated substrates prepared under our conditions could be more suitable for biological/biomedical applications.
Collapse
Affiliation(s)
- Renu Kapoor
- Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device. Biomed Microdevices 2010; 13:291-301. [DOI: 10.1007/s10544-010-9493-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Hsu YM, Chen CN, Chiu JJ, Chang SH, Wang YJ. The effects of fiber size on MG63 cells cultured with collagen based matrices. J Biomed Mater Res B Appl Biomater 2009; 91:737-745. [PMID: 19572296 DOI: 10.1002/jbm.b.31450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The behavior of human osteoblast-like MG63 cells cultured on electrospun collagen fibers of three different sizes (50-200 nm, 200-500 nm, and 500-1000 nm in diameter) were investigated. The growth of MG63 cells on all three electrospun collagen fibers are the same and about 70% higher than those cultured on monomeric collagen and tissue-culture polystyrene (TCPS). The migration speed of MG63 cells, on the other hand, decreased as the diameter of nanofibers increased. There were more distinct actin stress fibers formed in MG63 cells when the cells cultured on collagen substrates as compared with TCPS. In addition, MG63 cells displayed different adhesion and spreading patterns on different sizes of collagen fibers. Size variation of collagen nanofibers apparently has more impact on cell migration distance and cell morphology as compared with cell growth. It was demonstrated that collagen nanofibers promoted MG63 cell interaction with matrices by providing a suitably rough nanometer surface. The results of this study present important information for the development of collagen-based biomaterials.
Collapse
Affiliation(s)
- Yuan-Ming Hsu
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chun-Nan Chen
- Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, Republic of China
| | - Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Shih-Hsin Chang
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yng-Jiin Wang
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
17
|
Yun Y, Dong Z, Yang D, Schulz MJ, Shanov VN, Yarmolenko S, Xu Z, Kumta P, Sfeir C. Biodegradable Mg corrosion and osteoblast cell culture studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.02.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Baxter FR, Turner IG, Bowen CR, Gittings JP, Chaudhuri JB. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1697-1708. [PMID: 19308338 DOI: 10.1007/s10856-009-3734-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.
Collapse
Affiliation(s)
- Frances R Baxter
- Department of Mechanical Engineering, Centre for Orthopaedic Biomechanics, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
19
|
Wierzchos J, Falcioni T, Kiciak A, Woliński J, Koczorowski R, Chomicki P, Porembska M, Ascaso C. Advances in the ultrastructural study of the implant–bone interface by backscattered electron imaging. Micron 2008; 39:1363-70. [DOI: 10.1016/j.micron.2008.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
20
|
Ahmad M, Sampair C, Nazmul-Hossain ANM, Khurana N, Nerness A, Wutticharoenmongkol P. Therapeutic doses of radiation alter proliferation and attachment of osteoblasts to implant surfaces. J Biomed Mater Res A 2008; 86:926-34. [DOI: 10.1002/jbm.a.31737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|